中國造紙用植物纖維圖譜

喻誠鴻 李漸編著

1955.6.28. 貳原組

科學出版社
中國造纸用植物纖維圖譜

（一．現今工業上採用的種類）

喻誠鴻 李雲編著

科學出版社
1955年5月
內容摘要

本書就我國現今造紙工業中所採用的二十餘種原料植物的纖維以及其他在紙漿中可以找到的各種類型細胞的形態加以描述、繪圖及顯微攝影等，以供從事於紙漿檢驗者參考之用。並在使用本圖譜時所必需具備的植物纖維學常識加以簡明而扼要的介紹，因此，也供造紙專科學校教員及同學的參考。

中國造紙用植物纖維圖譜

（一．現今工業上採用的種類）

編著者：喻誠鴻　李　淍
出版者：科學出版社
地址：北京東四區糟兒胡同2號
印刷者：新華印刷廠
發行者：新華書店

定價：九角三分
序

由於對紙漿中各種成分的識別和各種製紙用原料的鑑定在我國造紙工業中日感需要。所以中央輕工業部在1953年底即向我院提出要求，希望在最短的期間，編著一種造紙用植物的纖維圖譜，使工程技術人員在紙漿檢驗工作中有所參考。此事經科學院植物研究所與輕工業部北京工業試驗所雙方多次商討後，決定先就我國造紙工業中已採用過的植物種類進行研究，以供目前的需要。至於其他可用而尚未應用的植物，或新發現而有利用前途的種類，則留待此研究工作完成後，再行繼續蒐集、研究，以期完成一部內容較為全面的文獻，供造紙工業上的應用。

本圖譜所用的材料，均直接採用全國各造紙廠目前正在使用的原料。圖譜的目的在於於便利工程技術人員在檢驗紙漿工作中應用，所以在描述各種植物的解剖特徵時均以圖片為主，而僅輔之以簡要的文字記載；在文字方面，也力求通俗，避免使用過多的術語。為了幫助那些沒有學過植物解剖學的讀者能使用這本圖譜，本書在本書的封面、前言等處均將在使用的圖譜時所必需了解的植物解剖學知識，予以簡明扼要的敘述。這樣，一方面既便於使用，一方面也可供造紙專科學校教員與同學們參考之用。

我們這件工作，是在中國科學院植物研究所與輕工業部北京工業試驗所雙方共同主持下進行的。分工如下：具體的研究工作及出版等事宜由中國科學院植物研究所負責；材料的搜集與提供工程技術人員在紙漿檢驗中對纖維圖譜的要求等，則由北京工業試驗所進行。兩方的聯繫工作則由北京工業試驗所工程師王金林同志承擔。全部研究工作則交由中國科學院植物研究所趙誠鴻及李燦兩位同志負責進行。由於這種工作的性質主要是關於植物解剖學科的範疇，所以北京工業試驗所又調撥幹部一名，直接參加工作；並期通過此書而能掌握有關這方面的知識，以供加強今後兩個機構進一步的合作。

在研究工作中的顯微製片及繪圖等工作，大部分係由中國科學院植物研究所常永鎮同志擔任；纖維細胞的測定則係北京工業試驗所王克等同志進行。

由於時間短促，欠妥之處在所難免，尚希讀者多多提供意見，以便今後在研究工作中得以改進。

中國科學院植物研究所
輕工業部北京工業試驗所 一九五四年初夏月
目 錄

第一編 通論 .. 1
 一 緒論 .. 1
 二 細胞與細胞壁的構造 ... 2
 I. 細胞壁的一般構造 .. 2
 II. 細胞壁的化學組成 ... 5
 III. 細胞壁的細微結構 ... 6
 三 植物的各種組織 .. 11
 I. 表皮組織 .. 11
 II. 薄壁組織 .. 13
 III. 厚角組織 .. 13
 IV. 厚壁組織 ... 13
 (1) 纖維的結構 .. 14
 (2) 纖維細胞的起源與發展 15
 V. 頹皮部 .. 17
 VI. 木質部 .. 17
 (1) 針葉樹次生木質部的構造 18
 (2) 闊葉樹次生木質部的構造 20
 第二編 各論 .. 23
 一 木材類原料 ... 23
 I. 針葉樹木材 .. 23
 (1) 松屬木材 ... 23
 (2) 雲杉屬木材 ... 24
 (3) 落葉松屬木材 ... 25
 (4) 冷杉屬木材 ... 26
 II. 闊葉樹木材 .. 27
 (1) 梧屬木材 ... 27
 (2) 樟屬木材 .. 27
<table>
<thead>
<tr>
<th>二 非木材類原料</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 草類原料</td>
<td>29</td>
</tr>
<tr>
<td>(1) 稻</td>
<td>29</td>
</tr>
<tr>
<td>(2) 小麥</td>
<td>30</td>
</tr>
<tr>
<td>(3) 薏麥</td>
<td>31</td>
</tr>
<tr>
<td>(4) 高粱</td>
<td>31</td>
</tr>
<tr>
<td>(5) 甘蔗</td>
<td>32</td>
</tr>
<tr>
<td>(6) 蒲草</td>
<td>32</td>
</tr>
<tr>
<td>(7) 蓼</td>
<td>33</td>
</tr>
<tr>
<td>(8) 龍鬚草</td>
<td>34</td>
</tr>
<tr>
<td>(9) 草odes草</td>
<td>34</td>
</tr>
<tr>
<td>(10) 南竹</td>
<td>35</td>
</tr>
<tr>
<td>(11) 慈竹</td>
<td>35</td>
</tr>
<tr>
<td>II. 靈皮類原料</td>
<td>36</td>
</tr>
<tr>
<td>(1) 硝麻</td>
<td>36</td>
</tr>
<tr>
<td>(2) 大麻</td>
<td>36</td>
</tr>
<tr>
<td>(3) 藤麻</td>
<td>36</td>
</tr>
<tr>
<td>(4) 棉</td>
<td>37</td>
</tr>
<tr>
<td>(5) 三桠</td>
<td>37</td>
</tr>
<tr>
<td>(6) 桑</td>
<td>37</td>
</tr>
<tr>
<td>(7) 槲</td>
<td>37</td>
</tr>
</tbody>
</table>
第一編 通論

一 緒論

在造紙纖維工業中，所採用的原料都是植物性的。遠在一千年百多年前，我國古代的學者、造纸術的發明人——蔡倫就說過：一切植物都可用來造紙。雖然如此，但並不意味着任何植物都是適宜的造紙工業原料。事實上，只有那些含有多量纖維質植物，同時它們的胞壁中的纖維素含量較高而其他不利於造紙加工的雜質（如樹脂、木質素等）含量較低者，才是良好的造紙原料植物。當然，棉、麻等工藝作物是最理想的材料，但這些植物同時又都是紡織工業中的主要原料，且價格昂貴，因此，在十九世紀以前，世界各國多以廢棄的棉、麻製品為造紙原料。

人類文化的進展，對紙張的需要日益增，僅靠破布舊麻為原料已感不足。於是，在世界各國的造紙工業中都開始去尋找新的原料了。1880 年，法國始創用穀類作物的秸秆破麻布混合造紙。至 1884 年，德國首先採用木材為造紙的原料，因此便給造紙工業開闢了豐富的原料源泉。直到今天爲止，針葉樹木材一直被公認爲主要的而且是較好的造紙原料。

就目前世界各國造紙工業中所用的原料而言，其中 75％均爲木材；而草類、廢紙、破布及麻類等不過佔 25％。但我國森林資源又有限，在國大規模經濟建設的時期，需用木材量又極大，因此，在造紙工業上便必須採用其他的原料來代替木材了。

目前，我國各造紙廠採用草類原料所佔的比重已日見增長，種類也比較繁多。為了解解所生產的紙張在質、量方面都能滿足人民的需要，則通過各方面的科學研究來選取合宜的造紙原料，已成當前的急務。而且這種研究不僅具有重大的經濟意義，同時在科學研究上也是有一定的價值的。

造紙用植物的組織結構的研究，不僅可供鑑定製漿原料種類之用，同時也可以根據各種原料植物的組織結構來判斷它們在工業應用上的價值及其利用前途。這本書的編著只是在這方面的研究做一個開端而已。我們深信，由於國家經濟生活與文化生活的不斷提高，對於造紙用原料植物的技術解剖研究，也必將獲得不斷的成就，以適應客觀的需要。深盼對這一學科的研究人員團結一致，共同努力來進行更深入
與更廣泛的研究，以便更好地為生產實踐而服務！

二 細胞與細胞壁的構造

細胞是構成植物有機體的基本單位，是由原生質體的活質所組成的。原生質體又是由細胞質、細胞核、質體、粒線體與各種內含物所組成。原生質體位於細胞壁之內，而細胞壁則又為原生質體活動的產物。它是由纖維素等物質所組成的。同時它也是造紙工業上所直接利用的材料。細胞的形狀、大小、機能等都是極多式多樣的。關於細胞的發生與細胞構造及其生物學特性等，都是比較複雜的問題，與紙漿檢驗的直接關係不大，所以在這裏不預備多涉及。至於細胞壁的構造，與我們的工作關係最為密切，所以應較詳細地加以說明。

Ⅰ 細胞壁的一般構造

種子植物的細胞，除了性細胞外，都是具有細胞壁的。植物的細胞壁是一種複雜的結構物，它是由許多層在結構上和化學性質上都不相同的層次所組成。根據它們的發生和構造，細胞壁可分三個最主要的部分，即：胞間層、初生壁和次生壁（圖 1）。胞間層把相鄰細胞的初生壁黏合起來，次生壁則位於初生壁的內部，直接與胞腔相鄰接。

![細胞壁的構造](image)

圖 1 細胞壁的結構：(A) 橫切面；(B) 縱切面。

胞間層——是一種無定形的膠體物質，主要是由果膠質所組成。它的光學特性是各向同性的。在木材中，胞間層一般均木質化。

初生壁——是在細胞形成時最早形成的一層胞壁。它是由纖維素及果膠酸化合
物所组成。此外还含有不同量的非纤维素多醣类及半纤维素类等。同様，在木材中，它也是木质化的。在光学特性上则与胞间层相反，是向着异性的。

次生壁——是在细胞壁的形成过程中，在初生壁上所增添的一层胞壁。它是由纤维素所组成，或是由纤维素、非纤维素的半纤维素等以不同的比率混合所组成的。由於次生壁中的纤维素含量高，所以它具有高度各向异性性的光学特性。

一般说来，管胞及髓射细胞的次生壁具有三層很明显的层次（见图1）。在这些层次之间，其物理性質与化学性質均有显著的不同程度的差異。

在某些植物的管胞或导管的次生壁上，除了有上述的三个明显层次外，还有一层很薄的、螺纹帯状的加厚，稱之为螺纹加厚（見圖版 Vll，圖6—8）。也有多數的解剖学家把螺纹加厚稱之为三生壁。不過三生壁這個名詞在現今的一般解剖學書中多不採用，而認为它是次生壁中的一部分。

次生壁的加厚并不是很均匀的，往往在加厚的过程中有很小的一部分享尚未加厚，因此在成熟的次生壁上便遗留下了許多的小孔，這種小孔稱为紋孔（圖2—5）。紋孔的構造、大小、排列與形状等都是多式多様的。但在某一類型的细胞中，卻保持着有固定的形式。因此，我們可以根據紋孔的特性來區別各種不同類型的细胞。

在相邻兩個细胞的胞壁中，每一個紋孔都具有一个與它相對排列的紋孔。這兩個相對排列的紋孔形成了在構造上與機能上的單位，稱之为纹孔对（图2A，图3，图4A—C）。

紋孔的構造——组成纹孔的两个主要部分为纹孔腔与纹孔膜。紋孔腔为次生壁上未曾加厚的整個空間，而紋孔膜则係一對紋孔之間的隔膜。從紋孔腔通至细胞腔的開口則名之為紋孔口。紋孔膜係由兩個細胞之間的胞間層與兩個細胞各自一層的初生壁組合而成的。

根據紋孔的結構，可以将紋孔分为两類，即單紋孔和具緣紋孔。

單紋孔——凡纹孔的紋孔腔為等徑
的圓柱形或近於等徑的圓柱形者，稱為單紋孔（圖 2A—B）。

具三個層次的次生壁

圖 3 具縫紋孔對（A）；及具縫紋孔的正面觀（B）。

具縫紋孔——與單紋孔主要的區別為有一部分的次生壁處懸在紋孔腔上。我們稱懸懸在紋孔腔上的這一部分次生壁為紋孔縫，稱這種具縫的紋孔為具縫紋孔。在具縫紋孔紋孔腔中央的特別加厚部分，則稱為紋孔托。在較厚的次生壁上，具縫紋孔的紋孔腔又可分為兩部分：靠近紋孔腔的腔道較寬一端名為紋孔室，與胞腔相鄰而

圖 4 厚次生壁中具縫紋孔對的構造
áf道較窄的一端則名為紋孔道。紋孔道通向細胞壁的開口名之為紋孔內口，通向紋孔室的開口為紋孔外口（圖 4-5）。

由於紋孔分為上述兩種不同的類型，因此，由兩個單紋孔所組成的紋孔對稱為單紋孔對，由兩個具緣紋孔所組成的紋孔對稱為具緣紋孔對，由一個具緣紋孔與一個單紋孔所組成的紋孔對稱為半具緣紋孔對。

紋孔在胞壁上排列的方式也是多式多樣的。一般來說可以分為三種主要的類型，即單列排列、前後與內列（圖 6 A-O）。我們往往可以根據導管壁上的紋孔排列類型來鑑定木材的種類。

![圖 5 厚次生壁中具緣紋孔的立體構造](image)

![圖 6 紋孔的幾種排列方式：(A)捲狀排列， (B)對列與 (C)內列](image)

II 細胞壁的化學組成

在植物細胞的細胞壁中，最主要的化學組成為纖維素。它構成了細胞壁的骨架。除纖維素外，還有木質素、非纖維素多醣類、半纖維素類及果膠質等化合物。脂族化合物、角質、木栓質與蠟質等也存在於某些類型細胞的胞壁中。特別是在植物體外部與外界環境相接觸處的細胞的胞壁中，如表皮細胞的胞壁中，含上述各種物質較多。
纖維素——是一種具有相當親水性的品質化合物。它的分子為鍵狀的結構，是由100個以上的葡萄糖基被氧橋結合而成的。

非纖維素多醣類——與纖維素關係較近者有纖維素醇、多縮半乳糖及多縮木醣等。

果膠質——乃多水解乳糖酯酸的衍生物，一般有三種類型，即原果膠、果膠及果
誰酸。半纖維素類與果膠質化合物的成分之自某些共同之點，但它們之間的溶解
度卻是不同的。果膠類化合物為無定形的膠體物，有可塑性，並且是親水的。

木質素——和纖維素一樣，木質素也是胞壁的最主要的成分之一。雖然經過了
一百多年的研究，但其化學特性，直到今天，還沒有徹底的了解。它是一種含碳量很
高的有機化合物。胞細胞層、初生壁及次生壁中都有存在。木質素最初呈現於胞細胞
層，而後向心地發展到初生壁中，最後及於次生壁中。在木材中，胞細胞層及初生壁的
木質素含量一般均高於次生壁中所含有的。

其他，如單寧樹脂、脂類及礦物質等也存在於細胞壁中，例如在草本植物
的細胞壁中呈含有於。

由於植物細胞壁的構造及其化學組成與紡織工業及造紙工業的加工過程有密切
的關係，因此，有關植物細胞壁的構造及其化學組成等等方面的理論研究，在近數十年
來有了很大的進展。在研究細胞壁的構造時，不僅應利用了顯微鏡下的觀察來說明它
的一般構造，同時還應用了偏振光顯微鏡、熒光顯微鏡、電子顯微鏡及X射線等工具
來研究它的細微結構。因此，關於細胞壁的細微結構，到今天可以說基本上已經搞清
楚了。於下，我們將有關這方面的研究結果概括地加以介紹。

III 細胞壁的細微結構

纖維素是構成植物細胞壁的基本物質，這是我們所共知的。而纖維素則係由長
度不等的鍵狀纖維素分子所組成。這些在植物細胞壁中的纖維素分子鍵並不是隨意
地分佈者，而是平行地排列著聚合而成的。這成束的纖維素鍵狀分子的聚合，稱之
為分子變煙（micelles）。組成分子變籠的纖維素鍵狀分子是由數目衆多的葡萄糖基
被氧橋所聯結而成的。在每一個葡萄糖基之間，都保持着一定的距離，有規則地排列
著。因此，這種由鍵狀纖維素分子所組成的束——分子變籠，可比之為一種晶體。在
此晶體中，各個組成單位係對稱地排列著的。

過去，纖維素分子變籠被認定是在那分子變籠間的（intermicellar）物質中排列
整齊的單獨單位。這個概念是拉杰里(Nägeli)在將近一百年前所提出的。但現今流行的觀點則認為纖維素分子束是以長度較大的、延伸於束外的分子鍊彼此結合而成的，並形成一種直孔的聯貫系統，稱之為分子組織系統(micellar system)。分子組織

圖 7 次生壁細胞構造的一般概念：(A)纖維細胞；(B)纖維細胞的胞壁一部分的放大，這一部分的細胞壁係由初生壁及次生壁所組成，從這裏又可以清楚地看出次生壁係由三個層次所組成的；(C)係組成次生壁的中間一層的高度放大，它是由被纖維素所包覆的纖
絲系統(白)，與被非纖維素物質所組成的織維間系統(黑)所組成；(D)纖維系縫的間接電鏡結構；(E)纖維分子束中的一部，示纖維素分子鍊在束中的排列；(F)示纖維素分子鍊的最基本單位——兩個葡萄糖基被氧橋所聯結。
系統與另一個系統——分子組織間系統 (intermicellar system) 是彼此地相互交織着的。構成分子組織間系統的基本物質不是纖維素，而是纖維素以外的某些組成胞壁的物質。

根據現今一般流行的關於纖維素分子組織的概念看來，分子組織系統中的分子組織，並不是指單位的分子組織，而是指在骨架中多數分子組織的綜合。中等長度的纖維素分子鍵，在骨架中組合成晶體點陣。

利用X射線來研究纖維素的細微結構，證明了它具有晶體的特性。由於X射線的波長較短於纖維素分子的大小，因此，當用一束X射線來衝擊一團纖維素時，大部分的射線均直接穿過，只有很少的一部分衝擊在原子或一羣原子上。這一小部分衝擊在原子或原子羣上的射線，便產生了衍射現象。如果用感光片把它記錄下來時，便能獲得一幅衍射圖案。我們便可以根据波長X射線從不同角度來衝擊同一團纖維素所獲得的衍射圖案來想像纖維素分子群結構的立體形態。如圖7. E所示，係屬於空間點陣式的結構類型。

由於在不同的平面上纖維素空間點陣各點間的距離有所不同，因此，纖維素分子組織的各組成分係各向異形性地分佈着的。各向異形性乃纖維素的重要物理特性之一。當纖維素膨脹時，在與分子組織長軸成直角的方向，其膨脹度較與長軸成平行方向的膨脹度要大些。從這一點也可以證明纖維是各向異形性的。纖維素的各向異形性特性用偏振光顯微鏡也可以看出來。因為在光學上，各向異形性物質均有雙折射現象。用偏振光顯微鏡來觀察纖維素時，當起偏振器與檢偏振器這兩個稜鏡成直角時，光線通過與分子組織長軸成直角的方向時光最明亮，如通過與分子組織長軸成平行的方向時則完全獲得相反結果。因此，我們常常可以利用偏振光顯微鏡來研究細胞壁的細微構造了。

總括起來講，根據X射線的研究，我們知道，纖維素是構成植物細胞壁的主要成分之一，是植物細胞壁的骨架。它是由纖維素分子組織系統與非纖維素分子組織間系統交互地組合而成的（圖7 D）。這種結構，並不是我們能夠直接觀察到的結ãi，而係根據X射線的衍射現象推算出來的。

從顯微鏡下所能觀察到的植物細胞胞壁的細微結構，如圖7 C所示，係由纖絲系統 (microfibrillar system) 與纖絲間系統 (microcapillary system) 兩者相互交織所組成的。纖絲系統係由許多極細微的纖絲所組成的一種具孔的纖維素間架。纖絲間系統是由除了纖維素以外的各種組成細胞壁的成分，如木質素、角質、蠟質、半纖維素等組成。
素類、果膠質、某些有機酸、甚至還有礦物質的晶體等所組成的。我們可以採用高度水化質化的較厚的次生壁為材料，用化學處理來顯明繊維與繊維間兩體的關係。如果我們用化學藥品將非繊維素物質完全溶去後，所遺留下來的是由純繊維素所組成

圖8 在普通顯微鏡下（A）與偏振光顯微鏡下（B）所顯示的胞壁構造。在圖A中形體較小的為薄壁細胞，形體較小的為纖維細胞。這些細胞均具有次生壁，但在纖維細胞中，次生壁與次生壁因緊密地結合在一起，所以不能把它們分辨出來。纖維細胞中，次生壁與次生壁的最外一層溶合在一起。在兩個細胞間的黑色線條係細胞間。圖（B）示次生壁與次生壁的雙折射現象。胞間層為黑色，因爲它是各向同性的。（1—次生壁的內層，2—次生壁的中層，3—次生壁的外層加初生壁）
的骨架。相反地如將纖維素溶去後，所遺留下來的則為由非纖維素物質所組成的一個骨架。這兩個骨架的形態，正如胞壁結構的一張正像與一張負像一樣。

利用電子顯微鏡的觀察，使我們了解到在纖維中，分子組織的排列是與纖維的長軸近於平行的。因此，根據在顯微鏡下所觀察到的纖維的排列方向便可以知道纖維素分子鍵在植物細胞壁中的排列方向了。

前面已經講過，可以利用偏振光顕微鏡所顯示的胞壁中各個層次的雙折射強弱來決定纖維素分子鍵的方向。既然在纖維中纖維素分子鍵的長軸與纖維的長軸近於平行，我們也可以用偏振光顯微鏡為工具來測定纖維在胞壁中的排列方向。除了用偏振光顯微鏡外，我們還可以從顕微鏡下所直接觀察到的胞壁上術紋的方向來決定它。具緣紋孔的紋孔口長軸與次生壁中間一層纖維的排列方向也是一致的，因此，我們也可以利用紋孔口的長軸方向來決定纖維的方向。

纖維在胞壁上的排列方向是多式多樣的。它不僅因植物的種類不同而有所不同，即在同一胞壁的胞壁中在各個不同層次上的排列方向也是不一致的。在顕微鏡下所顯示的細胞壁中各個層次中，有一部分便是由於纖維排列方向不同所造成的。

今以棉纖維為例（圖9）來說明纖維在細胞壁各個不同層次上排列方向的多樣性。

![纖維在細胞壁各層次的排列方向](image9)

纖維在細胞壁上的排列方向與細胞壁的光學性質及其他的物理性質有着密切的
關係。例如，當纖維在胞壁中的排列方向與細胞的長軸平行時，在橫切面的薄片上不
顯示各向異形的特性。在乾燥時細胞壁也不縱向收縮。如與細胞的長軸成直角時，則
在橫切面的薄片上顯示很強的雙折射現象。在乾燥時有縱向的收縮。我們推想，纖維
在細胞壁各層次中的排列方向與紙張的力學性質等一定有着密切的關係，究竟它們
之間的具體聯系如何，正是值得今後去研究的問題。

三 植物的各種組織

從植物解剖學的觀點來看，植物的組織是指一種連續的、有組織的細胞群而言。這
一類細胞的起源與組成的機能基本上是一致的。縱然在植物的同一組織中，細胞
的形狀與機能可以有很大的分歧，但構成這一組織的細胞卻一定是連續的並且構成
了植物體在結構上的一部分。

關於組織的分類方法，有各種不同的方式。有的根據它們在植物體中的位置為
分類的基礎，也有的根據構成組織的細胞的起源、種類、機能及發育的時期等作分類
的依據。在這裏，我們所採用的分類方法並沒有一個獨立而完整的體系，只是從便於
了解與使用這本圖譜的編輯出發，來加以分類和說明的。凡與此關係較遠的各種組
織，如分生組織等均略去。

I 表皮組織

表皮係指植物初生體中最外層的一層或多層細胞而言。它是由表皮細胞、構成
氣孔的保衛細胞與副衛細胞等所組成。在表皮上，也時常有毛存在。

表皮細胞的形態與排列方式以及氣孔的構造與數量等也因植物的種類的不同與
在植物體的部位的不同而有所不同。在這裏，我們僅將稈類的表皮組織加以介紹，其
他各種植物的表皮組織與紙張的關係較少，故從略。

1. 表皮細胞 —— 如圖 10 所示。在禾本科植物中，表皮細胞有兩種，一種較長的叫
長細胞，另一種較短的叫短細胞。細胞又分為兩種，一種名砂細胞（silica cell），另一
種名木栓細胞（cork cell）（圖 10）。砂細胞中幾乎都充滿了二氧化硅，而木栓細胞則
具有栓化的胞壁，且常常含有有機物的有機類物質。在植物體某些部位的細胞上，有時
形成為毛狀或剛毛狀的凸起物。一般說來，在禾本科植物的表皮上，多為一個長細胞
與兩個短細胞交互地排列著的。但有時也因植物的種類不同或在同一植物體的部位
不同，長短細胞的排列方式也不相同。雖然如此，但每一種禾本科植物的表皮細胞卻
具有它本身特有的排列方法和一定的形状，因此，我们可以根据这种特征来鉴定各种草类造纸原料的种类。

图10 甘蔗的表皮组织：(A)茎部的表皮组织；(B)叶脉下表皮的表皮组织。

2. 气孔——指表皮层上的开孔而言，是由两个在形状上与一般表皮细胞有区别的保卫细胞所组成。有时，在保卫细胞的两旁还有两个或两个以上的细胞，辅助保卫细胞行使气孔的功能，这种细胞称之为副保卫细胞。它们的形状也与一般的表皮细胞不同。

图11 禾本科植物气孔的构造

图中所示， folly由两个保卫细胞及两个副保卫细胞所组成。这两个保卫细胞的形状正如一对心脏一样；在球状的两端，细胞壁较薄；而中央的棒状部分则具有较厚的细胞。每当细胞内的膨胀压（turgor pressure）增加时，则球状的两端膨胀，而使
兩個保衛細胞的棒狀中央部分分離，形成一個開口（圖 11），這開口就稱為氣孔。也有一部分的解剖學者把保衛細胞、副衛細胞及開口（狭義的氣孔）合在一起統稱之為氣孔的（廣義）。在我們這本書上所提到的氣孔乃係指廣義的氣孔而言。

氣孔多分佈在葉部的表皮上，在莖的表皮中則數量較少。

II 薄壁組織

組成薄壁組織的細胞，其胞壁均薄，壁上的紋孔為単紋孔。細胞的形狀為等徑的或近於等徑的多面體。如果為圓柱狀或長方柱狀時，其兩端的端壁為水平向或近於水平向，長軸與短軸的差別不甚大。這一類的細胞卻是有生命的細胞，在植物體的任何一部分都具有。在髓部、葉肉及草本植物的莖中數量則尤多。薄壁細胞主要是行使植物的營養機能，所以在它裏面有各種不同的內含物或結晶體等。由於這種細胞長度甚短，因此，從造紙工業的利用角度看來並不是一種很重要的成分。

III 厚角組織

厚角組織也是由有生命的細胞所組成。這些細胞的長度較大，有較厚的且未木質化的初生壁。由於在這些細胞彼此相鄰接處的胞壁均較厚，故稱之為厚角細胞。厚角細胞與薄壁細胞的區別從橫切面上看是比較顯著的，但在縱切面或分離材料中卻是難以明確分的。一般說來，厚角細胞比較長而窄，而薄壁細胞則短而寬。這個特徵當然是比較抽象而不具體的。因此，在我們這本圖譜中，便把薄壁細胞與厚角細胞都統稱之為薄壁細胞。這種合併，從純形態學的觀點看來當然是欠妥的，我們這樣做的目的，不過為的便於應用而已。

IV 厚壁組織

厚壁組織指一種細胞壁很厚的，常常是木質化的細胞集羣而言。這一類細胞的功能主要為支持植物體之用。

厚壁細胞的形狀、結構、大小等的差異程度很大，要把這一類的細胞再細分為若干小的類型而給予恰當的定義是一件比較困難的事情。直到今天，在解剖學上還沒能夠建立一個完善的系統來將這一類的細胞分成若干小類。一般說來，厚壁細胞可以分為兩大類，即纖維與石細胞。凡長度較大、兩端漸尖的紡錘狀厚壁細胞，稱爲纖維；凡長度較短、非紡錘狀的厚壁細胞，統稱為石細胞。它的形狀、大小、胞壁的厚
薄等變化均極大。在植物體內幾乎均含有之。至於談到纖維，它在植物體的任何部分也都存在。一般在皮層、中柱鞘、周皮部及木質部中含量最多。在禾本科植物的莖中，在表皮組織下形成交的環柱狀排列（把含有葉綠素的薄壁組織，即解剖學中所謂的綠色組織包被在環柱中）。此外，在輸導束的外面也有纖維束排列着，而把輸導束圍起來。因此，我們將輸導束與包圍它的纖維束合稱為維管束。在單子葉植物葉中，纖維的含量也是很多的。在葉中纖維束的分佈也多係在輸導束的四週及在表皮之下。有時分佈在輸導束四周的纖維束與分佈在表皮下面的纖維束可以聯結起來（圖版 XXIII，圖 1）。由於在草類植物的葉中含有多量的纖維，因此，像龍鬚草等植物的葉便是良好的造紙原料。

從纖維的形態來講，可以分為兩大類，即木纖維（指在木質部中的纖維）與韌皮纖維。在這裏所指的韌皮纖維係指皮層，中柱鞘同韌皮部中的纖維的總稱。這兩類纖維在形態上的區別主要是前者胞壁上的紋孔為具緣紋孔（紋孔緣明顯或不明顯），而後者為單紋孔。

(1) 纖維的結構

韌皮纖維——典型的韌皮纖維為一長紡錘狀的厚壁細胞，胞壁的兩端為漸尖或鈍尖，有時還有具分枝的末端。它們長度的變化很大。草類植物的纖維長度多在1—3毫米之間，而木質纖維的長度，一般均較此為大。如苧麻的纖維，最長的可達55厘米以上。這一類纖維的胞壁多厚，以亞麻的纖維為例，在亞麻韌皮纖維的橫切面上，胞壁所佔的面積幾佔90%，而胞腔所佔的面積約在10%左右（圖版 XXIX，圖 7）。胞壁的紋孔為單紋孔，也有一部份的紋孔具極不顯著的緣。胞壁木質化或不木質化。就亞麻言，它的纖維是非木質化的，幾乎全部由純纖維素所組成。但草類的纖維則多為木質化的。

有些植物的韌皮纖維，其胞壁的薄層，即使不經過膨脹處理也可以在顯微鏡下明確地見到，如大麻的（圖版 XXX，圖 10）及亞麻的（圖版 XXIX，圖 7）胞壁薄層，在纖維橫切面上，都很容易看出。

木纖維——典型木科纖維的次生壁都是已木質化的。木纖維的大小、形狀、胞壁的厚薄及紋孔的數量與排列的方式等都有很大的變異。在木質部中，一切不具穿孔的紡錘狀厚壁細胞，在造紙工業上都稱之為纖維。這個廣義的纖維包括在解剖學上的三種細胞，即管胞、纖維管胞與韌型木纖維。它們在形態上的區別將留在討論次生
木質部的構造時再詳述。

(2) 纖維細胞的起源與發育

關於纖維細胞的起源與發育，在植物解剖學的領域中，也是一個比較理論性的問題。雖然與造紙加工的直接關係較少，但與纖維細胞的長短、厚薄等特性卻有密切的聯系，因此也有略加說明的必要。

木質部與韌皮部的纖維都是起源自形成層或原形成層的。除了真正存在於韌皮部的韌皮纖維之外，其餘的韌皮纖維都是由基本組織發生的。但在維管束中的纖維，一部分是由基本組織所衍生的，一部分是由原形成層衍生而來的。

就纖維的發育而言，纖維細胞的長度能如此之大，實在是一件很有意義的事情。我們可以發現，初生纖維（即不是起源自形成層的纖維）與次生纖維（起源自形成層的纖維）在長度上有很大的差別。初生纖維一般較次生纖維長得多。要了解這個問題，便必須從纖維細胞的發生方面去着手。

初生纖維，在它所在的植物器官還沒有開始成長之前便在這個器官中發生了，因此，它是和在這個器官中的其他細胞同時成長的。這種和其他細胞一起成長的情況叫做異形生長（sympathetic growth）。然而，纖維細胞的長度比其他類型的細胞長得多，這種由於異形的長度除了有同形生長外，還有一種頂端侵入生長（intrusive growth）。次生纖維起源於已經停止成長的器官中，因此，它們便不會再有同形生長，而只有靠頂端侵入生長來增加長度。由於初生纖維與次生纖維所具的生長方式不同，因此，在同一植物體中，初生韌皮部的纖維較次生韌皮部的纖維長得多。根據孔杜（Kundo）的報告，在大麻的初生韌皮部中，纖維的平均長度為12.7毫米，而次生韌皮部中纖維的平均長度則為2.2毫米。

初生韌皮纖維的長度與它所在的器官的長度也是有關連的。例如大麻纖維的長度與大麻葉的長度成正比。龍舌蘭的纖維長度與龍舌蘭葉的長度有關，芭蕉葉的則與其葉柄的長度有關。

在初生韌皮纖維中，由於它們長度成長方式比較複雜，以致次生壁加厚的方式也比較複雜。在前面講到細胞壁的時候已經說過，在初生壁的出現是在次生壁的表面不再增大時才開始的。因此，當初生纖維用同形方式長時，它仍然是薄壁的。也可以說，在這個時候，整個的纖維細胞的胞壁還在不斷地增加面積。等到同形生長停止後，頂端的侵入生長便開始了。在這個時候，並不是整個的纖維細胞都在擴展，而
只是兩端還在增長着。因此，在兩端的胞壁仍然是薄壁的，而在纖維細胞的中部，由於已不再增長，次生壁便開始出現於這已不增長的初生壁上了（見圖12，C）。

圖12 初生葉皮纖維的生長與次生壁加厚的過程：（A）幼嫩的纖維細胞，短而瘦；
(B) 同型形生長，細長加粗；(C) 胞的中部長度停止增長，第一層次生壁在後開始形成，兩端仍用侵入生長繼續増長；(D) 細胞的中部與基部都已停止生長，因此，第二層第三層等次生壁不斷形成並逐漸及於基部；(E) 細胞的上下兩端仍停止生長；次生壁的四層層次加厚都及於基部，但頂端則尚未完全變熟；F——纖維細胞不同部位的橫切面。
今以麻及亞麻初生韌皮纖維的次生壁加厚具體情況為例來加以說明如下：這兩種植物的纖維細胞，其次生壁有許多很明確的薄層，其中的每一層均為管狀。在早期，這個管狀的薄層是從中部同時向下及向上生長的，因所以在這個時候，纖維細胞的兩端都在進行管狀生長的緣故。由於纖維細胞下端的侵入生長比上端的停止得要早些（因為它已經埋藏在成熟的組織中），向上端則又進入到仍在生長着的組織中去了。所以往後次生壁的每一個層次的增加都是由基部向上添加的。當着纖維細胞上端的侵入生長也停止了之後，則次生壁的層次慢慢地都相繼一直增到頂部了。

V 韌皮部

韌皮部是一種複合組織。組成它的基本成分是織管分子、伴細胞、薄壁細胞及纖維等。

織管分子——這是一種管狀的細胞，細胞壁的兩端有管狀的開口。這些細胞聯結起來便組成織管。在紙漿中，難找到織管分子，所以不再多述。

韌皮織維與按細胞——韌皮部除了含各各各樣在形狀及大小上都不同的薄壁細胞外，還有一種較特化的薄壁細胞。它是和織管分子緊密地生長在一起的，故有此名。

韌皮纖維——從經濟利用的角度來看，韌皮纖維是韌皮部最引人注意的一種成分。它是紡織工業和造紙工業中主要的被利用的對象。關於這一方面的問題，在前面講到纖維時已詳細敘述過，故在此不再重述了。

VI 木質部

從構造上講，木質部是一種複合組織，它是由許多不同種類的細胞組合而成的。

最主要的有：導管、管胞、木纖維、木薄壁細胞等幾種類型的細胞。

從它的發生來講，木質部又可分為初生木質部與次生木質部。從植物初生體分化而來的木質部為初生木質部，由形成層衍生的木質部稱為次生木質部。在我們所應用的草類造紙原料植物體中，都沒有形成層，所以便沒有次生木質部，而只有初生木質部。在木材原料中，初生木質部所佔的量極微，簡直可以說全部都是由次生木質部所組成的。

初生木質部的構造——較次生木質部的要簡單些。主要是由少數的管胞、導管分子及多數的薄壁細胞所組成的。
初生木质部中的导管分子，因次生壁加厚的情况不同可分为四种类型，即环纹导管、螺纹导管、网纹导管（包括梯纹在内）及纹孔导管（图13）。这些类型的导管，在草类纸浆中很容易找到。在纸浆中如发现有这一类的导管分子，便可以断定它是由草类原料所制的纸浆。

图13 初生木质部的构造：(A) 横切面；(B) 纵切面。

次生木质部的构造——一般说来，次生木质部的构造比初生木质部的要复杂些。阔叶树次生木质部的构造又比针叶树的复杂。现在把它們的一般构造分别加以介绍。

(1) 針葉樹次生木质部的構造

針葉樹的次生木质部（木材），主要是由纵向排列的管胞所组成的。此外還有木
薄壁细胞，木射線管胞，木射線薄壁细胞与分泌细胞等。

管胞——这是一种收缩的管状细胞。其端部在径切面为圆锥形，在弦切面为锐尖形。在它的径向壁上具有许多直径在15微米下上的具尖纹孔。

管胞的长度变异性很大，不仅因树种不同而异，即使在同一棵树中，因生长的部位不同也有差异。以鱼鳞松的管胞长度变异性为例，在靠近髓部的管胞，其长度比成熟部分的管胞长度相差至4~6倍之多。在针叶树中，管胞最短的只有1/2毫米，而最长的可达11毫米，一般多在1.5~4.5毫米之间。

管胞的直径，在木材解剖学上一般系指它的切向直径而言。在针叶材中最大的可达80微米以上，而最小的只有15微米。至管胞的径向直径，在同一个生长层中因部位不同也不相同。这特点可以从图14中的横切面上看出。在早材中，一般都大於、等於或略小於切向直径，但在晚材中则均小於切向直径。

胞壁上的纹孔多集中在管胞的径向壁上。在早材的管胞中，径向壁上的纹孔都很显著， sigh向地排列成一至数列。纹孔列数的多寡常依管胞径向直径的大小为转移。在目前我步应用於造纸的树种中，其径向胞壁上的纹孔多为列，只有在落葉松早材的管胞中可以经常碰到有两列的。晚材管胞径向壁上的纹孔直径一般均小於早材者，形状也与早材者略有区别（图14，B）。管胞的切向壁上纹孔稀少，直径也小於径壁的纹孔直径，但大多数管胞的切向壁上，一般都不具纹孔。

此外，在未成熟的雲杉木材中，其管胞壁上常常有螺纹加厚出现。
木薄壁细胞——這是縱向排列的細胞，端部水平，胞壁薄，具單紋孔。在胞端中常含有深色的內含物。木薄壁細胞，在針葉樹木材中一般均不發達。在目前我們用於造紙工業的幾種木材中，均無木薄壁細胞。

木射線薄壁細胞——這是橫向排列的一種薄壁細胞。其形態特徵與縱向排列的木薄壁細胞基本上是一致的。它是組成木射線最主要的成分之一，許多樹種的木射線全部由木射線薄壁細胞所組成。

在木射線薄壁細胞與縱向排列的管胞之間相交叉的地區名之為交叉場。交叉場的紋孔類型在鑑定紙漿時常常可以用作鑑定原料種類的重要特徵之一。全部針葉樹木材中的交叉場紋孔可以分為五種不同的類型。

1. 窗形單紋孔——為松屬木材的重要特徵，形狀如圖版 I, 圖 5, 6, 8 所示。
2. 雲杉型紋孔——如圖 15, A 所示，雲杉、落葉松木材的交叉場紋孔屬此一型。
3. 柏木型紋孔——如圖 15, B 所示，柏科植物木材的交叉場紋孔屬此一型。
4. 杉木型紋孔——如圖 15, C 所示，冷杉木材的交叉場紋孔屬此一型。
5. 松木型紋孔——為松屬木材所特有，形狀介於窗型單紋孔與杉木型之間，為單紋孔或略具窄縫。如為單紋孔時與窗型單紋孔的區別為形狀較小。如略具窄縫時，與杉木型的區別為紋孔口兩端較尖。

![圖 15 (A)雲杉型；(B)柏木型；(C)杉木型。](image)

木射線管胞——這是水平向排列的管胞，在松、雲杉、落葉松三屬的木射線中均有，約少數冷杉屬的木材中，其木射線內也有木射線管胞存在。

有許多種松屬木材的木射線，其內壁平滑，如紅松（圖版 I, 圖 7）。也有許多種松屬木材，其內壁為鉛直狀，如馬尾松（圖版 II，圖 10）。

分泌細胞——這是一種具分泌機能的薄壁細胞。針葉樹木材中的樹脂道乃指在這些分泌細胞之間的腔道，分泌細胞分泌樹脂於其中。在雲杉、落葉松及松等三屬木材中均有樹脂道存在。冷杉屬木材則無。

(2) 闊葉樹次生木質部的構造

闊葉樹的次生木質部要比針葉樹的複雜些，它是由導管分子、木纖維（指管胞、纖
維管胞、細胞型木纖維）, 木薄壁細胞及木射線薄壁細胞等所組成。

1. 導管分子——這些組成導管的基本單位，是由一系列的導管分子首尾相連地結合而成的。導管分子為兩端具有開口的長管狀、圓柱狀或具角的柱狀細胞。它兩端的開口稱為導管的穿孔。導管分子的穿孔有兩種類型，一種叫單穿孔（如圖版 VI, 圖 6-7, 圖版 VIII, 圖 7)。另一種名為楔狀穿孔（如圖版 VII, 圖 6-7)。導管分子的穿孔類型，在鑑定木材種類上是一個頗為價值的特徵。

導管分子的底壁有的近於水平，有的傾斜，還有許多植物的導管分子兩端有舌狀的尾部伸凸於底壁之外（如圖版 VI 圖 6-7)。

導管分子側壁上的紋孔為具緣紋孔，它的數目比管胞上的要多，但直徑則較小。紋孔的排列方式有三種，即梯狀排列、對列及互列。此外，在許多植物的導管分子側壁上還有螺紋加厚。

在橫切面上，我們所看到的導管分子的切面，稱之為管孔。管孔的排列也是多式多樣的，總括起來講，有四種類型：（1）單管孔，為管孔單獨地分佈在基本組織中；（2）複管孔，為 2 至數個管孔相鄰成徑向排列的行列，除了在兩端的兩個管孔仍為圓形外，在中間部分的管孔則為扁平狀；（3）管孔鎚，為相鄰的一排管孔徑向地排列成鎚狀；它與複管孔主要區別在於管孔鎚的個別管孔仍保留原來的形狀；（4）管孔圍，為數目衆多的管孔聚集成一團，稱之為管孔圍。

在同一生長輪中，管孔直徑的大小也並不都是一致的，如果在早材部分的管孔直徑與在晚材部分的管孔直徑之間其大小有顯著差異的稱之為環孔材；如差異不顯著
或無甚差異的則稱之為散孔材。

2. 木纖維——包括管胞、纖維管胞及雜型木纖維三種成分。它們都是瘦長的紡錘狀細胞，統稱木纖維。它們三者的區別如下：凡胞壁上的紋孔線，其紋孔線明
顯，直徑等於或大於導管分子側壁上的紋孔直徑者則稱為管胞；紋孔線明顯或不甚明
顯，直徑小於導管分子側壁上的紋孔直徑者則稱為纖維管胞；紋孔線不明顯或無者
則稱為雜型木纖維。

3. 木薄壁細胞——這是指在木材中縱向排列的薄壁細胞而言。它在橫切面上的
排列方式可以分為：(1) 絲狀排列，指木薄壁細胞單獨地、不規則地分佈於木纖維
中；(2) 輪狀排列，指木薄壁細胞分佈在年輪的末端，形成或多或少的連續的、不同
寬度的層次；(3) 間位狀排列，指木薄壁細胞在木纖維中的排列成同心環狀者；(4)
環管狀排列，指木薄壁細胞分佈在管孔的四週而言；如環管狀排列的木薄壁細胞數
量很多，在管孔兩側有如翼狀者則稱之為翼狀排列。

4. 木射線——全部由木射線薄壁細胞所組成。由於組成木射線的木射線薄壁細
胞形狀是否相同可以把木射線分為兩種：即同型木射線與異形木射線；凡全部由於
徑向延長的木射線薄壁細胞所組成的木射線稱為同形木射線；如由徑向延長的與縱
向延長的兩種木射線薄壁細胞所組成的木射線則稱為異形木射線。

在闊葉樹的木材中，同樣也有由分泌細胞所組成的腔道，由於在可供造紙用的木
材中均無此特徵，故不贅述。
第二編 各論

在我國造紙工業中，所採用的原料植物種類如下：

(一) 木材類

I. 針葉樹木材——針有松、雲杉、冷杉及落葉松等四屬植物的木材。

II. 闊葉樹木材——針有楊、樺、椴等三屬植物的木材。

(二) 非木材類

I. 草類——包括有稻、小麥、苡麥、高粱、甘蔗、蘆葦、荻、龍鬚草、芨芨草、南竹、慈竹等。

II. 鞣皮類——包括亞麻、大麻、葛麻、棉、三拒、桑和楊等七種植物。

一 木材類原料

I 針葉樹木材

(1) 松屬木材

本屬木材在我國的儲藏量甚為豐富，僅次於雲杉，種類也很多，除在西北區較少外，各屬都有相當的產量。目前用於造紙原料的只有馬尾松（Pinus massoniana Lam.）及紅松（Pinus koraiensis Sieb. & Zucc.）兩種，前者為南方習見的樹種，在南方紙廠中利用它製造機械紙漿及化學紙漿，後者則分佈在東北小興安嶺至長白山的東部山地，有大面積森林，東北紙廠中利用它為硫酸鹽法制漿原料。

紅松（Pinus koraiensis Sieb. & Zucc.）

(A) 木材的鑑別特徵:

(a) 橫切面：在生長輪界處，早材與晚材管胞胞壁的厚度有顯著的區別。有由薄壁分泌細胞所構成的樹脂道，每平方毫米 0—5 枚。木薄壁組織無。

(b) 切向切面：木射線有單列的及紡錐形的兩種。在紡錐形的木射線中有由薄壁分泌細胞所構成的樹脂道一枚。

(c) 徑向切面：木射線由木射線管胞及木射線薄壁細胞兩種成分所組成。木射線薄壁細胞與管胞相交處的紋孔為單紋孔，窗形、大，每格 1—8 枚，大多為 2—3 枚。木射線管胞與管胞之間的紋孔為具緣紋孔，木射線管胞的內壁平滑，無錐齒狀的加
厚，此為與馬尾松木材的主要區別。

(B)分離材料中各種類型細胞的形態描述：在本種木材的分離材料中，有管胞、木射線管胞及木射線薄壁細胞等三種主要成分，其中管胞佔絕大多數。此外還有分泌細胞，因為經過藥品處理後纖維成一團，失去其原來的形狀，在這兒不描述。

(a) 管胞（圖版 I, 圖 4—6）：為長紡錘形的細胞。因晚材管胞不具鑑別特徵，所以只描述早材管胞。長度為 1.62—2.80 毫米，一般的為 2.01—2.42 毫米。切向直徑一般多在 22—32 微米之間，最大可達 38 微米，徑向直徑一般多在 32—45 微米之間，最大可達 55 微米。胞壁上有許多明顯的具緣紋孔，排列成一縱列，在少數管胞的兩端有時有 3—5 對成對排列的紋孔。紋孔的直徑為 16—24 微米，一般多在 18—20 微米之間。形狀為圓形或近似圓形。在與木射線相交處有許多窗形的單紋孔。

(b) 木射線管胞（圖版 I, 圖 7）：較管胞小得多，為一種短節片狀形的細胞，胞壁上有具緣紋孔。其內壁平滑。

(c) 木射線薄壁細胞（圖版 I, 圖 8）：與木射線管胞大小相似，長方形，胞壁上有許多窗形的單紋孔。

馬尾松（Pinus massoniana Lamb.）

(A) 木材的鑑別特徵：

主要的特徵與紅松同，所不同的是本種木射線管胞的內壁為鋸齒狀。

(B) 分離材料中各種類型細胞的形態描述：

(a) 管胞（圖版 II, 圖 4,5,9）：早材管胞長度為 1.65—4.82 毫米，一般的為 3.05—4.25 毫米。切向直徑一般多在 27—34 微米之間，最大的可達 42 微米。徑向直徑一般多在 34—53 微米之間，最大的可達 72 微米。胞壁厚度為 2.0—3.8 微米。胞壁上的具緣紋孔排列成一縱列，為圓形或扁圓形。紋孔的直徑為 12—26 微米，一般多在 19—22 微米之間。與木射線相交處有許多窗形的單紋孔。

(b) 木射線管胞（圖版 II, 圖 10）：形狀及大小與紅松的相似，但其內壁為鋸齒狀。

(c) 木射線薄壁細胞（圖版 II, 圖 6）：與紅松的相同。

(2) 雲杉屬木材

本屬木材在我國已發現的約十餘種，木材儲積量甚豐富，其中魚鱗松（Picea jezoensis Carr.）及紅皮臭（Picea koyamai Shiras.）分佈於小興安嶺及長白山，東北造紙廠利用此二種木材為製造化學紙漿的原料。茲將它們的解剖特徵描述如下：

(A) 木材的鑑別特徵：
第二篇 木材类原料

(a) 横切面：在生長輪界處，早材與晚材管胞壁的厚度有明顯的差別。有由厚壁
分泌細胞所構成的樹脂道，每平方毫米 0—5 枚。木薄壁組織無。

(b) 切向切面：木射線有單列的及紡錘形的兩種，在紡錘形的木射線中有由厚壁
分泌細胞所構成的樹脂道一枚。

(c) 徑向切面：木射線是由木射線管胞及木射線薄壁細胞兩種成分所組成。木
射線薄壁細胞與管胞相交處的紋孔為雲杉型，每格 2—5 枚，大多為 2—4 枚。木射線
管胞與管胞之間的紋孔為具緣紋孔，木射線管胞的內壁平滑。

(B) 分離材料中各種類型細胞的形態描述：

(a) 管胞（圖版 III，圖 4，8）：早材管胞長度為 1.45—3.20 毫米，一般的為 1.85—
2.48 毫米。切向直徑一般大在 18—34 微米之間，最大的可達 42 微米。徑向直徑一
般大在 30—41 微米之間，最大的可達 66 微米。胞壁厚 2—3.8 微米。胞壁上的具緣
紋孔排列成一縱列，偶而也有成對排列的紋孔。圖形或扁圓形，大多為圓形。紋孔的
直徑為 14—21 微米，一般大在 17—19 微米之間。與木射線相交處有許多雲杉型紋
孔。

(b) 木射線管胞（圖版 III，圖 7）：為短節片狀的細胞，胞壁上有具緣紋孔，其內
壁平滑。

(c) 木射線薄壁細胞（圖版 III，圖 7）：與木射線管胞的大小相似，長方形，胞壁
上有許多雲杉型紋孔。

(3) 落葉松屬木材

本屬木材產於我國西南的高山及東北地帶，東北有三種，即黃花松（Larix
dahurica Turcz.），落葉松（Larix leptolepis Murr.）及長白落葉松（Larix olgensis
A. Henry）。分佈於大興安嶺及東北東部山地，有大面積純林，在僞滿時代，曾利用
它們為造紙原料。茲將它們的解剖特徵描述如下：

(A) 木材的鑑別特徵：

(a) 横切面：在生長輪界處，早材與晚材管胞胞壁的厚度有明顯的差別。有由厚壁
分泌細胞所構成的樹脂道，每平方毫米 0—6 枚。木薄壁組織無。

(b) 切向切面：木射線有單列的及紡錘形的兩種，在紡錘形的木射線中有由厚壁
分泌細胞所構成的樹脂道一枚。

(c) 徑向切面：木射線是由木射線管胞及木射線薄壁細胞兩種成分所組成。木
射線薄壁細胞與管胞相交處的紋孔為雲杉型。每格 1—6 枚，多為 2—4 枚。木射線
管胞與管胞之間的紋孔為具緣紋孔，木射線管胞的內壁平滑。

(B)分離材料中各種類型細胞的形態描述:

(a)管胞（圖版 IV, 圖 4-6）: 早材管胞長度為 1.15—4.02 毫米，一般的為 1.95—3.96 毫米。切向直徑為 22—48 微米，最大的可達 64 微米。徑向直徑為 42—66 微米，最大的可達 85 微米。胞腔厚 2.2—4.0 微米。胞腔上的具緣紋孔排成二 1—2 縱列。圓形或扁圓形。紋孔的直徑為 12—28 微米。與木射線相交處有許多雲杉型紋孔。

(b)木射線管胞（圖版 IV, 圖 9-12）: 爲短節片狀的細胞，胞壁上有具緣紋孔，其內壁平滑。

(c)木射線薄壁細胞（圖版 IV, 圖 10）: 與木射線管胞的大小相似，長方形，胞壁上有許多雲杉型紋孔。

(4) 冷杉屬木材

本屬木材產於我國的約有十種以上，其中四川約居半數，餘則散佈於湖南、雲南、山西、甘肅、東北一帶。東北產的有兩種，即臭松（Abies nephrolepis Max.）與冷杉（Abies holophylla Max.）分佈於小興安嶺至長白山一帶森林中。東北造紙廠利用它們爲製造化學紙漿的原料。茲將此二種木材的解剖特徵描述如下:

(A)木材的鑑別特徵:

(a)橫切面：在生長輪界處，早材與晚材管胞胞壁的厚度有明顯的區別。無樹脂道，此爲本屬與前三屬主要的區別。

(b)切向切面：只有單列木射線，無水平樹脂道。

(c)徑向切面：木射線由木射線薄壁細胞構成。木射線薄壁細胞與管胞相交處的紋孔主要爲杉木型，少數爲柏木型。每格 1—5 枚，多爲 2—3 枚，排成一橫行。

(B)分離材料中各種類型細胞的形態描述:

(a)管胞（圖版 V, 圖 4,5,10,11）: 早材管胞的長度為 1.59—4.35 毫米，一般的為 2.43—3.96 毫米。切向直徑為 28—42 微米，最大的可達 48 微米。徑向直徑為 23—43 微米，最大的可達 49 微米。胞腔厚度為 1.5—3.8 微米。胞腔上的具緣紋孔排成一縱列，在一部分管胞的兩端有時有 1—6 對成對排列的紋孔，圓形或扁圓形。紋孔的直徑為 15—24 微米。與木射線相交處主要爲杉木型紋孔，少數爲柏木型紋孔。

(b)木射線薄壁細胞（圖版 V, 圖 6—7）: 長方形，胞壁上有杉木型及柏木型紋孔。
（1）楓屬木材

楓屬木材在我國分佈甚廣，生長迅速，性好滋潤地。東北最主要的有山楓（*Populus tremula* var. *davidiana* Schneid.），分佈於大、小興安嶺至長白山山地。次為香楓（*Populus koreana* Rehd.），興安楓（*Populus suaveolens* Fischer）等。東北造纸廠利用為製造機械紙漿的原料。上述幾種木材的解剖特徵大致相似，茲以山楓為代表，描述如下：

（A）木材的鑑別特徵：

（a）橫切面：散孔材，管孔每平方毫米180—285枚。孔徑為21—80 微米，一般為45—70 微米。纖維管胞的胞壁極薄，木薄壁細胞為輪界狀排列。木射線每毫米11—16 條。

（b）切向切面：木射線僅有單列的一種。最高的可達 38 個細胞，一般高 8—15 個細胞。導管低壁傾斜。

（c）徑向切面：導管為單穿孔。管間紋孔為圓形的具緣紋孔，在木射線邊緣 1—3 列的細胞與導管之間的紋孔為單紋孔，小格狀。

（B）分離材料中各種細胞的形態描述：

在分離的材料中所含的各種成分以纖維管胞為主，導管其次，木射線薄壁細胞及木薄壁細胞則較少。

（a）導管（圖片 VI，圖 4—7）：直徑同上述。管壁厚約1.5 微米，導管分子長 297—680 微米，一般的長510—980 微米。導管側壁上的紋孔為圓形的具緣紋孔，直徑 8—12 微米，交互狀較密集地排列。在與木射線邊緣部分交相處的紋孔為小方格狀或不規則的小格狀單紋孔，橫向排列。

（b）纖維管胞（圖片 VI，圖 13—14）：胞壁厚1.7—4.8 微米，一般為2.2—4.8 微米。直徑 15—42 微米。胞壁厚約19—30 微米。胞壁厚約 680—1190 微米，一般長985—1020 微米。胞壁紋孔為具緣紋孔，數目不多，孔緣較明顯，直徑 3.5—4.4 微米，紋孔內口為裂隙狀。

（c）木射線薄壁細胞及木薄壁細胞（圖片 VI，圖 11—12）：二者形狀相似，不易區分，惟一部分木射線薄壁細胞具小方格狀的單紋孔。

（2）樺屬木材
本屬木材在我國分佈很廣，約十五種以上。東北以白皮樺 (Betula platyphylla Komar.) 及其變種 (B. platyphylla var. mandshurica Han) 最多，從大興安嶺到長白山，分佈甚廣，有大面積純林。另外楓樹 (B. costata Trautr.)，黑皮樺 (B. chinensis Max.) 及黑樺 (B. davurica Pall.) 分佈不大廣。東北造紙廠利用為亞硫酸法製漿原料。它們的解剖特徵甚相似，茲以白皮樺為代表描述如下：

(A) 木材的鑑別特徵：

(a) 橫切面：散孔材，管孔每平方毫米 81—135 枚，孔徑為 21—70 微米，一般為 42—70 微米。纖維管胞的胞壁薄。木薄壁細胞數目稀少，為輪界狀排列，木射線每毫米 6—9 條。

(b) 切向切面：木射線有單列的及多列的兩種。單列木射線高 2—25 個細胞，一般高 8—17 個細胞。多列木射線高 11—32 個細胞，一般高 15—23 個細胞。導管底壁傾斜。

(c) 儀向切面：導管為梯狀穿孔，管間紋孔為圓形的具緣紋孔，導管與木射線細胞間的紋孔也為圓形的具緣紋孔。

(B) 分離材料中各種類型細胞的形態描述：

(a) 導管 (圖版 VII, 圖 6—7)：直徑同上述。管壁厚 2.1—2.5 微米，導管分子長 680—980 微米，一般的長 705—840 微米。在導管側壁上的紋孔為圓形的具緣紋孔，直徑 2.2—2.8 微米，交互狀很密集地排列。與木射線細胞相交處的紋孔與上述情況相同。

(b) 細維管胞 (圖版 VII, 圖 8—10)：胞壁厚 1.8—5.2 微米，一般為 2.2—3.8 微米，直徑 13—29 微米，一般為 18—26 微米。長度為 700—1500 微米，一般長 900—1200 微米。胞壁上的紋孔為具緣紋孔，有明顯的紋孔緣。紋孔直徑 2.8—3.2 微米。紋孔內口為裂隙狀。

(c) 木射線薄壁細胞與木薄壁細胞 (圖版 VII, 圖 12—14)：二者形狀相似，不易區分。

(3) 懸屬木材

本屬木材在我國分佈也很廣，約二十一種。東北有兩種，即梓樺 (Tilia amurensis Rupr.) 及殼樺 (T. mandshurica Rupr. & Maxim.)，分佈在小興安嶺至長白山山地。東北造紙廠利用為製造機械木漿。茲將此兩種木材的解剖特徵描述如下：

(A) 木材的鑑別特徵：
(a) 横切面：散孔材，管孔每平方毫米 185—280 枚，孔径为 27—75 微米，一般为 33—58 微米。纤维管胞的胞壁薄。木薄壁细胞为椭圆状，切线状及傍管排列。木射线每毫米 5—11 條。

(b) 切向切面：木射线有单列的及多列的两种。单列木射线高 1—19 個細胞，一般的高 5—12 個細胞，多列木射线最高的可达 3850 微米。导管底壁傾斜。

(c) 径向切面：導管為單穿孔，導管壁具螺紋加厚，管間紋孔為圆形的具緣紋孔，導管與木射线細胞之间的纹孔与上述的相同。

(b) 分離材料中各種類型細胞的形態描述：

(a)導管（圖版 VIII, 圖 6—8）：直徑同上述。管壁厚 1.5—2.3 微米，導管分子長 254—630 微米，一般的長 330—450 微米。在導管側壁上的紋孔呈圆形的具緣紋孔，直徑 4—5.5 微米，交互状密集排列。與木射线细胞相交處的紋孔與上述情況相同。

(b) 纖維管胞（圖版 VIII, 圖 13—14）：胞壁厚 1.6—5.8 微米，一般為 2.2—3.6 微米。直徑 16—42 微米，一般為 20—36 微米。長度為 420—1,450 微米，一般長 600—890 微米。胞壁上的紋孔為具緣紋孔，紋孔緣較明顯。紋孔直徑 2.4—3.4 微米。紋孔内口为裂隙状。

(c) 木射线薄壁细胞与木薄壁细胞（圖版 VIII, 圖 9—12,16）：二者形状相似，不易區別。

二 非木材類原料

I 草類原料

(1) 稻（Oryza sativa L.）

稻是我國的主要糧食作物之一，以湖南、湖北、四川、安徽、江蘇、浙江等省產量較多。在造紙工業中利用稻稈為製漿的原料，稻草漿造成的紙張一律，均好，因之，在我國木材資源有限的情況下，稻草是很好的造紙原料。

分離材料中各種類型細胞的形態描述：

(a)纖維：長度為 277.2—1,981.6 微米，平均為 976.5 微米。直徑為 3.9—18.1 微米，平均為 9.1 微米。胞壁厚 2.6—4.8 微米，平均為 3.3 微米。長度在 300 微米以下的短纖維，它胞壁上的紋孔較為明顯（圖版 X, 圖 8）。在一般長度較大的細長的纖維上，用高倍鏡頭才能看見紋孔（圖版 X, 圖 9a—9b）。纖維細胞的胞壁上除紋孔外無其
他花紋。

(b) 薄壁細胞：由於它們在植物體中的部位不同，所以形狀大小等的變化較大。一般有如圖版 X, 圖 10—13 所示的各種形狀。長度為 41.0—228.9 微米，平均為 103.5 微米。直徑為 27.3—149.1 微米，平均為 51.5 微米。

(c) 導管：有螺紋、環紋及紋孔導管三種類型。紋孔導管長度為 215.3—772.8 微米，平均為 437.9 微米。直徑為 18.9—73.5 微米，平均為 41 微米。

(d) 表皮：莖、葉及葉鞘的表皮細胞，其排列與形狀均不甚一致。在葉部表皮細胞為兩個短細胞與一個長細胞交互地排列，長細胞細而長，有邊緣平滑與邊緣有齒狀的兩種（圖版 X, 圖 3—6），表皮上的毛稀少，生於短細胞上，氣孔不常見。葉及葉鞘的長短細胞排列不規則，並且長細胞較短的短且寬，邊緣為錐齒狀，氣孔較長的為多，毛較短（圖版 X, 圖 1—2）。葉的表皮與葉鞘的相似，惟氣孔較葉鞘的為多。

(5) 砂細胞：數目不多，如圖版 X, 圖 14 所示。

(2) 小麥 (Triticum vulgare Vill.)

小麥是我國北部的主要糧食作物，以河南、山東兩省產量最多，江蘇，河北，安徽，四川，陝西，山西等省次之。現在有一部造紙廠利用麥稈為原料，可以造成質地很好的紙及紙板。

分隔材料中の各類型細胞的形態描述：

(a) 纖維：長度為 414.1—3,918.8 微米，平均為 1,324.4 微米。直徑為 6.5—27.4 微米，平均 14.2 微米。胞壁厚為 2.2—7.8 微米，平均為 5.2 微米。長度較大的纖維細胞胞腔較大，且孔明顯，而長度較小的纖維細胞腔較小且孔不明顯（圖版 XII, 圖 10—11b）。胞壁上除紋孔外並無其他花紋。

(b) 薄壁細胞：形狀如圖版 XII, 圖 7a—8 所示，長度為 78.8—672.0 微米，平均為 329.7 微米。直徑為 27.0—109.2 微米，平均為 65.1 微米。

(c) 導管：有螺紋、環紋及紋孔導管三種類型。紋孔導管長度為 525—1,155 微米，平均為 693 微米。直徑為 16.8—45.2 微米，平均為 33.6 微米。

(d) 表皮：在莖中，長表皮細胞與短表皮細胞排列不甚規則，一部分有表皮細胞的邊緣平滑，紋孔不明顯，另一部分有表皮細胞邊緣為淺波浪狀，有很顯著且數目較多的單紋孔，有氣孔（圖版 XII, 圖 4）。葉鞘的表皮細胞較長的爲大，邊緣呈明顯的缺刻，兩個短細胞與一個長細胞交互排列（圖版 XII, 圖 3,5—6）。葉部的表皮，長、短細胞的排列也不規則。一部分表皮細胞邊緣為波浪狀（圖版 XII, 圖 2），另一部分
表皮細胞邊緣平滑，有氣孔及長的毛（圖版 XII，圖 1）。

（3）莜麥（*Avena nuda* L.）

莜麥為我國西北部的一種糧食作物。工業上已利用莜麥桿為造紙原料。

分離材料中各種類型細胞的形態描述：

(a) 纖維：長度為 504—2,320.5 微米，平均為 1,167.6 微米。直徑為 5.6—28.7 微米，平均為 14.7 微米。胞壁厚 2.6—7.6 微米，平均為 4.5 微米。長度較小的纖維胞腔較大，紋孔稀少（圖版 XIV，圖 10a—10b）。長度較大的纖維胞腔小，紋孔不明顯（圖版 XIV，圖 11），胞壁上無其他花紋。

(b) 薄壁細胞：形狀如圖版 XIV，圖 12—18 所示。長度為 139.7—536.6 微米，平均為 235.2 微米。直徑為 27.3—109.2 微米，平均為 65.1 微米。

(c) 導管：在分離材料中未發現螺紋導管。紋孔導管長度為 399.0—934.5 微米，平均長 521.6 微米。直徑為 27.3—43.0 微米，平均為 33.6 微米。

(d) 表皮：底部的表皮細胞邊緣平滑，有少數具稀錐齒狀邊緣（圖版 XIV，圖 6—7）。平滑邊緣的表皮細胞均甚長，一般如圖版 XIV，圖 4a 所示。有一部分表皮細胞的兩端為漸尖形（圖版 XIV，圖 5），如單獨存在時與短纖維易區分。葉的表皮中氣孔稀少，在高倍鏡下紋孔顯著（圖版 XIV，圖 4b，7）。葉脈的表皮細胞也分為邊緣平滑及邊緣為波浪狀者兩種，波浪狀邊緣的表皮細胞較多，表皮細胞上有鱗片狀突起物及氣孔（圖版 XIV，圖 1—3）。葉部的表皮與葉脈的表皮相似，惟氣孔較多，並有厚壁的短錐狀的剛毛（圖版 XIV，圖 8）。

（4）高粱（*Sorghum vulgare* Pers.）

爲我國的主要雜糧之一，以東北產量最高，其次為山東、河北、河南、山西等省，造紙時利用高粱桿為原料。

分離材料中的各種類型細胞的形態描述：

(a) 纖維：長度為 511.4—3,868 微米，平均為 1,207.8 微米。直徑為 6.1—23.8 微米，平均為 14.1 微米，胞壁厚 3.0—8.2 微米，平均為 4.8 微米。纖維細胞的胞腔一般都很小（圖版 XVI，圖 6），但有少數的較大（圖版 XVI 圖 7）。胞壁上紋孔稀少，少數的纖維中胞壁上有層次。

(b) 薄壁細胞：形狀如圖版 XVI，圖 8—12 所示，長度為 71.4—766.5 微米，平均為 157.5 微米。直徑 37.8—105 微米，平均為 67.2 微米。

(c) 導管：有環紋、螺紋及紋孔導管。紋孔導管長度為 396.9—1,128.5 微米，平
均爲 826.4 微米。直徑爲 36.8—97.6 微米，平均爲 55.1 微米。
(d) 表皮：茎部的表皮上有氣孔，但無毛。在有氣孔的行列中無短細胞，無氣孔的行列中兩個短細胞與一個長細胞交互排列。長細胞邊緣近於平滑，僅略有極微小的齒狀凸起，只有在高倍鏡下仔細觀察才能發現。胞壁上的單紋孔顯著（圖版 XVI，圖 3）。葉鞘表皮上的短細胞排列與葉的相同，細胞邊緣具較大的齒狀凸起（圖版 XVI，圖 1—2），紋孔顯著，有氣孔而無毛。葉部表皮與葉鞘的相似，但胞壁較薄。
(e) 石細胞：在葉鞘中有許多如圖版 XVI，圖 5 所示的紡錘狀的石細胞。
(5) 甘蔗（Saccharum officinarum L.）
我國以江蘇、浙江、福建、廣東、湖北、四川及台灣為甘蔗主要產區，其中以廣東、四川兩省最為集中。在造紙工業中，係利用製糖工業所廢棄的甘蔗渣來充當製漿原料的。如果將甘蔗渣全部用來造紙，每年至少可以造出數十萬噸各種文化與工業用紙。
分離材料中的各種類型細胞的形態描述：
(a) 繖維：長度為 653—4,725 微米，平均為 1,866.9 微米。直徑 10.8—35.0 微米，平均為 20.3 微米。胞壁厚為 3.7—7.8 微米，平均為 5.4 微米。繖維細胞的胞腔較大，紋孔多而顯著（圖版 XVIII，圖 5—6），在目前國內所採用的各種草類原料中以甘蔗渣的繖維最長，直徑也較大所以根據繖維繖維的大小，易於與其他草類的原料區別。除長度較大的繖維以外，還有一類長度較小、兩端較鈍或其中有一端為分叉狀的短繖維（圖版 XVIII，圖 4a—4b）。在這一種短繖維的壁上，紋孔多而顯著。
(b) 蒸管細胞：形狀及大小的變異很大，如圖版 XVIII，圖 7—13 所示。長度為 255.2—756.0 微米，平均為 491.4 微米。直徑 44.1—230.5 微米，平均為 91.4 微米。
(c) 導管：在分離液中維管束不易分開，所以導管很少單獨存在，這是甘蔗渣的特徵之一，故導管的大小不能測量。
(d) 表皮：表皮細胞的胞壁較厚，一個長表皮細胞與兩個短表皮細胞交互排列，長表皮細胞的邊緣上有鋸齒狀凸起，從正面看如圖版 XVIII，圖 1 所示，側面看如圖版 XVIII，圖 2 所示。
(6) 蘆葦（Phragmites communis Trin.）
在我國分佈很廣，尤以東北為多。蘆葦價格低廉，每年能收割一次。目前蘆葦在我國各種造紙原料中佔相當重要的地位。
分離材料中各種類型細胞的形態描述：
第二编 二 非木材類原料

（a）纖維：長度為 277.2—2,919.0 微米，平均為 905.1 微米。直徑為 7.3—32.4 微米，平均為 13.2 微米，胞壁厚為 3.5—10.6 微米，平均為 6.1 微米。纖維細胞的胞腔極小，紋孔顯著或不顯著（圖版 XIX，圖 7—10）。有些纖維細胞的胞壁上有螺紋狀的裂隙（圖版 XIX，圖 8）。有少數纖維其胞壁的一側呈淺波浪狀，如圖版 XIX，圖 9 所示。

（b）薄壁細胞：如圖版 XX，圖 1—3，11，12 所示。長度為 39.9—235.4 微米，平均為 97.7 微米。直徑為 27.3—70.4 微米，平均為 42.0 微米。

（c）導管：有環紋，螺紋及紋孔導管三種。紋孔導管長度為 189—703.5 微米，平均為 3.58.1 微米。直徑為 48.3—140.8 微米，平均為 95.6 微米。

（d）表皮：基部的表皮細胞狹長，胞壁很厚，邊緣為波浪狀，氣孔稀少（圖版 XX，圖 6）。葉穂的表皮細胞一部分較基部的短而寬，邊緣缺刻較基部的大，氣孔很多，在有氣孔的行列中無短細胞，無氣孔的行列中兩個短細胞與一個長細胞交互排列（圖版 XX，圖 5）。另一部分表皮細胞為長方形或近於方形，映刻不顯著，氣孔少（圖版 XX，圖 4，7）。

（e）石細胞：數目較多，形狀大小也極不一致。一部分石細胞的胞壁層次很多，其少數裂隙狀的紋孔，另一部分的胞壁層次較少，有許多單紋孔（圖版 XX，圖 8—10，13—15）。

（7）荻（Miscanthus sp.）

產於湖南、湖北、四川、廣東、新疆等省，現已利用為造紙原料。

分離材料中的各種類型細胞的形態描述：

（a）纖維：長度為 449.6—4161.2 微米，平均為 1,607.2 微米。直徑為 6.5—26.2 微米，平均為 15.8 微米。胞壁厚 3.2—11.5 微米，平均為 6.7 微米。纖維細胞兩端較尖，胞腔極小，有三種類型。一部分纖維細胞胞壁有明顯的層次（圖版 XXII，圖 6）。另一部分纖維細胞上有許多不規則的花紋（圖版 XXII，圖 9），第三種則為胞腔極小的纖維，其胞壁上紋孔顯著，無其他花紋（圖版 XXII，圖 8）。

（b）薄壁細胞：有筒狀及扁長形兩種（圖版 XXII，圖 12—13）。長度為 42.0—593.3 微米，平均為 257.3 微米。直徑為 21.0—90.3 微米，平均為 45.2 微米。

（c）導管：以紋孔導管數量較多，螺紋次之，環紋最少，紋孔導管長度為 390.6—1,490.0 微米，平均為 882.0 微米。直徑為 16.8—115.0 微米，平均為 56.7 微米。

（d）表皮：基部的表皮細胞如圖版 XXII，圖 2—4 所示，胞壁較厚，邊緣為銳齒狀，在有氣孔的行列中無短細胞，在無氣孔的行列中每一個長細胞與兩個短細胞交互
地排列。葉鞘的表皮細胞較窄的寬，邊緣缺刻也較深，長短細胞排列不規則，有氣孔及毛（圖版 XXII，圖 1）。

(e) 石細胞：數目較少，兩端鈍尖，胞腔較大，胞壁具層次，並有許多明顯的具緣紋孔（圖版 XXII，圖 11）。

(8) 龍鬚草（Eulaliopsis binata (Retz.) Hubbard.）
目前湖北造紙廠已利用龍鬚草造紙，所造的紙品質很好。主要是以葉為原料。
分離材料中的各種類型細胞的形態描述：
(a) 細胞：長度為 635.7—2,705.8 微米，平均為 1,440.4 微米。直徑為 5.8—19.8 微米，平均為 12.7 微米。胞壁厚為 4.3—7.6 微米，平均為 5.8 微米。纖維細胞腔的大小不一致，有一種的胞腔較小，胞壁外面有一層很薄的鞘（圖版 XXIV，圖 6）。另一種胞腔較大一種為大，含纖維物質，有紋孔（圖版 XXIV，圖 4—5），從數量上講以前一種的纖維最多。

(b) 薄壁細胞：數量較少，形狀、大小如圖版 XXIV，圖 9—10。

(e) 道管：有螺旋及紋孔導管。紋孔導管長度為 456.4—1,173.6 微米，平均為 617.2 微米。直徑為 24.5—47.3 微米，平均為 34.2 微米。

(d) 表皮：長表皮細胞的邊緣為銳齒狀，短表皮細胞的邊緣平滑，胞壁亦較長細胞的為厚。長細胞與短細胞的排列無一定的規則，在一行中或長、短相間或全部為短細胞，或全部為長細胞。表皮上氣孔數目較多，毛也較多，有的端鈍為銳圓形，有的則為鈍尖形，毛的長度也是不一的（圖版 XXIV，圖 1—3）。

(9) 草茅草（Achnatherum splendens (Trin.) Ohwi.）
廣佈於我國北部和西北部，是良好的造紙原料。
分離材料中的各種類型細胞的形態描述：
(a) 細胞：長度為 399—1,680 微米，平均為 808 微米。直徑為 4.3—15.6 微米，平均為 9.1 微米。胞壁厚為 1.7—3.8 微米，平均為 2.9 微米。纖維細胞的胞腔較大，有紋孔（圖版 XXVI，圖 15）。還有一部分纖維細胞，兩端鈍尖（圖版 XXVI，圖 14）。在這些草類原料中莠茅草的纖維是最短的。

(b) 薄壁細胞：長度為 31.5—407.4 微米，平均為 193.2 微米。直徑為 18.6—57.0 微米，平均為 21.3 微米。形狀如圖版 XXVI，圖 12—13 所示。

(e) 道管：環紋、螺紋及紋孔導管，以紋孔導管較多。紋孔導管長度為 152.3—580.3 微米，平均為 313.5 微米。直徑為 29.4—68.3 微米，平均為 46.2 微米。
第二篇 二 非木料类原料

(d) 表皮: 茎部的表皮细胞较萎缩及叶的为小, 胞壁也较薄, 邊緣缺刻甚小, 長、短細胞排列不甚規則, 氣孔少(圖版 XXVI, 圖 3)。葉鞘的表皮細胞的形狀及長、短細胞排列均不規則, 邊緣的錐齒較顯著, 氣孔較莖部的多(圖版 XXVI, 圖 4—5)。葉部的表皮細胞上氣孔數目較多, 並生有許多毛, 毛有長、短兩種, 長毛較少, 短毛甚多, 分佈於短細胞上(圖版 XXVI, 圖 1—2)。

(e) 石細胞: 分佈於葉鞘內, 形狀如圖版 XXVI, 圖 11—12 所示。

(10) 南竹 (Phyllostachys edulis A. & C. Riv.)

江南各省都有出產, 以江蘇、江西產量較多。

分離材料中的各種類型細胞的形態描述:

(a) 織維: 長度為 651.0—3,150.0 微米, 平均為 1,203.0 微米。直徑為 9.3—25.9 微米, 均為 16.6 微米。因胞腔太小, 故胞壁厚度無法測量。織維細胞的胞壁外有一層薄膜狀的鞘, 一部分織維的胞壁層次不明顯, 紋孔顯著(圖版 XXVII, 圖 14)。另一部分織維細胞的胞壁具有許多層次, 胞腔極小, 不易觀察, 具裂隙狀的紋孔(圖版 XXVII, 圖 13)。有少數短纖維細胞, 兩端鈍尖, 胞腔較大, 胞壁具層次且有横隔(圖版 XXVI, 圖 11)。

(b) 薄壁細胞: 數目不多, 見圖版 XXVII, 圖 6。長度為 36.8—290.9 微米, 平均為 105 微米。直徑為 23.3—75.6 微米, 平均為 46.2 微米。

(c) 導管: 紋孔導管很大, 長度為 346.5—1,123.5 微米, 平均為 878.9 微米。直徑為 57.5—168.0 微米, 平均為 150.1 微米。

(d) 表皮: 在分離材料中量很少, 不易找到。表皮細胞邊緣平滑, 長短細胞排列不規則, 紋孔不顯著, 氣孔稀少(圖版 XXVII, 圖 4)。

(e) 石細胞: 數量較多, 形狀大小也極不一致, 胞壁具許多層次, 紋孔多而顯著(圖版 XXVII, 圖 6—10)。

(f) 網壁細胞: 有小的單紋孔, 見圖版 XXVII, 圖 12。

(11) 荒竹 (Sinocalamus sp.)

四川產量較多。

分離材料中各種類型細胞的形態描述:

(a) 織維: 長度為 690.2—3,248.0 微米, 平均為 1,755.7 微米。直徑為 8.2—28.8 微米, 平均為 15.9 微米。胞壁厚為 3.5—7.9 微米, 平均為 5.6 微米。織維細胞的紋孔顯著, 有一部分織維的胞壁薄, 而胞腔則較大(圖版 XXVIII, 圖 9), 另一種胞壁較厚
而胞腔较小(图版 XXVIII, 图 10), 部分的纤维细胞的胞壳外有一层薄的壁。

(b) 薄壁细胞: 形状如图版 XXVIII, 图 6-8 所示。长度为 57.8-301.2 微米，
平均为 112.9 微米，直径为 25.2-59.9 微米，平均为 39.5 微米。

(c) 导管: 纹孔导管很大，长度为 525-1,365 微米，平均为 892.5 微米。直径为
51.5-173.3 微米，平均为 99.8 微米。

(d) 表皮: 数量少，不易找到，表皮细胞质较厚，纹孔多而显著，长短细胞交互
排列，气孔稀少(图版 XXVIII, 图 4)。

(e) 网状细胞: 见图版 XXVIII, 图 5。

II 韧皮类原料

(1) 亚麻 (Linum usitatissimum L.)

产于河北、山西、甘肃、青海、内蒙古自治区、东北。是一种重要的韧皮纤维作物。

亚麻纤维的长度及直径较粗麻及麻麻的为大，长度为 3.6-43.2 毫米，一般多在
15-25 毫米之间，直径为 9.9-70.8 微米，平均为 29.5 微米。胞壁上面有許多不规则
的裂隙，胞腔极小，有時不顯著，纹孔極稀少(图版 XXIX, 图 8-9)。亞麻纤维最著
著的特點為向兩端極緩慢地漸尖，此漸尖的末端在纖維的全長中佔相當大的比例，圖
版 XXIX, 圖 3 示漸尖的一部分。

(2) 大麻 (Cannabis sativa L.)

产于宁夏、察哈尔、山西、内蒙古自治区，山东、安徽及泰山均有大量栽培。

大麻的纖維比亚麻的短，但较麻麻的长。最短的纤维为 3.0 毫米，最长可达 30
毫米以上，12-25 毫米的较普通。直径为 9.9-29.7 微米，平均为 19.5 微米。胞壁上的
裂隙较亚麻的少，胞腔极小，纹孔稀少(图版 XXX, 图 8)，纤维胞壁有的层次明显
(图版 XXX, 图 9)，纤维两端的直径与中部的几相等。仅有端为钝尖形，图版 XXX、
图 4-7 示大麻纤维的尖端。

(3) 麻麻 (Abutilon avicennae Gaer.)

自河北至云南、贵州皆有出産。

麻麻纤维比亚麻的及大麻的短得多，长度为 1.2-49 毫米，平均为 2.3 毫米。直
径为 9.9-29.7 微米，平均为 19.5 微米。麻麻纤维的胞腔较大麻及亚麻的大，纹孔
显著且数目较少，胞壁上无裂隙(图版 XXXI, 图 6)。纤维两端较尖的变尖(图版
XXXI, 图 4)。
（4）棉 (Gossypium sp.)

我国棉产丰富，如今棉桱皮的纖維也用作造纸原料，其質柔軟可造質量很好的纸。

棉桱皮的纖維長度為 2.9—6.5 毫米，一般在 3.6—5.1 毫米之間。直徑 5.9—16.5 微米，平均為 9.9 微米。胞腔較大，胞壁上的裂隙極少（圖版 XXXII，圖 9—10）。纖維細胞兩端緩慢地漸尖，端部為銳尖形（圖版 XXXII，圖 3—8）。

（5）三桼 (Edgeworthia chrysantha Lindl.)

產於浙江、湖北、四川、雲南各省。三桼的皮部纖維是造纸的良好原料。

纖維的長度為 1.9—6.1 毫米，一般多在 3.0—4.7 毫米之間。直徑為 6.5—21.6 微米，平均為 11.7 微米。按胞腔與胞壁的比例來講，三桼的胞比桑和樸的為大，纖維細胞的胞壁上有與纖維細胞的長軸近於垂直的裂隙，在胞壁外有不甚顯著的膜質鞘。絕大多數的纖維兩端極緩慢地漸尖（圖版 XXXIII，圖 3—4），較短的纖維則向兩端較快地尖削下去（圖版 XXXIII，圖 7）。

（6）桑 (Morus alba L.)

中國各省皆產。桑皮是很好的造纸原料。

纖維長 3.6—14.9 毫米，一般多在 5 毫米以上，直徑 9.2—45.5 微米，平均為 21.0 微米。在纖維胞壁上有稀疏的折疊形的裂隙存在，其方向與纖維的長軸近於垂直，胞腔極小，胞壁外面有一層膜質鞘（圖版 XXXIV，圖 4），膜質鞘在纖維的尖端更為顯著（圖版 XXXIV，圖 5—6），但有一部分纖維細胞的胞腔較大而胞壁較薄，有樹膠狀內含物（圖版 XXXIV，圖 8），胞壁上的層次只有在纖維的橫切面上才能看出。

（7）楮 (Broussonetia papyrifera Vent.)

產於河北、山東、江蘇、浙江、湖北、四川等地，楮皮也是一種良好的造纸原料。

纖維長度為 3.9—8.7 毫米，一般多在 5.4—7.9 毫米之間。直徑為 11.6—30.4 微米，平均為 19.8 微米。纖維的形態與桑皮的近似，細胞腔極小，胞壁厚，纖維細胞的胞壁有膜質鞘等。但不同之點是它的鞘較桑的顯著，並且胞壁上的裂隙多而明顯（圖版 XXXV，圖 8—9），有些纖維的胞壁上，部分地顯示層次（圖版 XXXV，圖 7）。
紅松 *Pinus koraiensis* Sieb. & Zucc.

1. 横切面 ×80. 2. 深切面 ×80. 3. 弦切面 ×80. 4-5. 分離的材料 ×96. 6. 早材管胞的一部分 ×180，注意管胞交又壁紋孔。 7. 木射線管胞 ×180，注意木射線管胞內壁平滑。 8. 木射線薄壁細胞 ×180. 9. 早材管胞橫切面 ×360. 10. 晩材管胞橫切面 ×360.
馬尾松 *Pinus massoniana* Lamb.

1. 横切面 ×80. 2. 径切面 ×80. 3. 弦切面 ×80. 4-5. 分離的材料 ×96. 6. 木射線薄壁細胞 ×180. 7. 晚材管胞横切面 ×360. 8. 早材管胞横切面 ×360. 9. 早材管胞一部分 ×180. 注意窪形交叉場紋孔. 10. 木射線管胞 ×180. 注意木射線管胞內壁皺齒形.
魚崎松 *Pinus jezoensis* Carr.

1. 横切面 ×40
2. 径切面 ×80
3. 弦切面 ×80
4. 分離の材料 ×95
5. 早材管胞横切面 ×350
6. 晚材管胞横切面 ×350
7. 木射線管胞及木射線壁細胞 ×350
8. 早材管胞一部分 ×180

注意: 鱼崎松交叉細胞壁。
黃花檵 Lirix dahurica Turcz.

1. 橫切面 ×80. 2. 徑切面 ×80. 3. 縱切面 ×80. 4-5. 分離的材料 ×80. 6. 雞材管胞一部分 ×100. 注意雲杉型交叉場紋孔. 7. 早材管胞橫切面 ×300. 8. 晚材管胞橫切面 ×300. 9. 木射線管胞 ×180. 10. 木射線管胞與木射線薄壁細胞 ×180. 11-12. 木射線管胞 ×180.
沙椠 *Abies holophylla* Max.

1. 横切面 ×80. 2. 径切面 ×80. 3. 弦切面 ×80. 4-5. 分離的材料 ×96. 6-7. 木射線薄壁細胞 6, ×180. 7, ×360. 8. 晚材管胞横切面 ×360. 9. 早材管胞横切面 ×360. 10-11. 早材管胞一部分 ×180. 注意杉木種交叉橫紋孔。
山楊 *Populus tremula* var. *davidiana* Schnid

白皮樺 Betula platypyla Komar.

1. 横切面×80. 2. 径切面×80. 3. 弦切面×80. 4-5. 分離的材料×96. 6-7. 細胞分子×96; 7. ×180. 注意紡錘形孔及特別小的管間紋孔. 8-10. 細維管胞×180. 11. 細維管胞橫切面×360. 12-14. 木薄壁細胞及木射線薄壁細胞×180.
繼假 Tilia mandshurica Rupr. & Maxim.

1. 横切面 ×80. 2. 徑切面 ×80. 3. 弦切面 ×80. 4-5. 分離的材料 ×96. 6-8. 導管分子的一部分 ×360. 注意單穿孔及導管壁的螺紋加厚. 9, 10, 12, 16. 木射線薄壁細胞 ×180. 11. 木薄壁細胞 ×180. 13-14. 糧維管胞與木薄壁細胞 ×180. 15. 糧維管胞横切面 ×360.
稻 Oryza sativa L.

1. 茎的横切面 ×68。
2-4. 茎的分離材料 ×46。
3. 注意導管及薄壁細胞。
4. 注意維管。
稻 Oryza sativa L.

1. 蕎鞘的表皮 ×360. 2. 穗的表皮 ×360. 3. 穗的表皮 ×360. 4-5. 單個的柱下表皮細胞 ×360. 6. 穗的表皮 ×360. 7. 繊維的橫切面 ×720. 8. 短纖維 ×360. 9a. 纖維 ×72. 9b, 9a 一部分的放大 ×360. 10-13. 穩壁細胞 ×360. 14. 細胞 ×360.
小麥 *Triticum vulgare* Vill.

1. 穩的横切面 ×96 2. 積的表皮 ×96 3-4. 積的分離材料 ×96.
小麥 *Triticum vulgare* Vill.

1-2. 葉的表皮 ×360. 3. 葉維的表皮 ×360. 4. 管的表皮 ×360. 5-6. 單個的葉維表皮細胞 ×360. 7a. 薄壁細胞 ×72. 7b. 7a一部分的放大 ×360. 8. 薄壁細胞 ×180. 9. 管維的橫切面 ×545. 10. 管維較薄的纖維 ×360. 11a. 管維較厚的纖維 ×72. 11b. 11a一部分的放大 ×360.
敦煌 *Avoca nuda* L.

1. 柱的横切面 ×96. 2. 柱轴的表皮 ×96. 3. 柱的表皮 ×93. 4. 柱的分隔材料 ×96.
莜麥 Avena nuda L.

1-3. 糧精的表皮 ×360. 4a. 糧的單個的表皮細胞 ×180. 4b. 4a—部分的放大 ×360. 5. 糧的表皮 ×360. 6. 糧的單個的表皮細胞 ×180. 7. 圖6—部分的放大 ×360. 8. 糧的表皮 ×360. 9. 糧的橫切面 ×545. 10. 胞壁較薄的纖維。a. ×72；b. a 的末端放大 ×360. 11. 胞壁較厚的纖維 ×180. 12-18. 膠壁細胞 12-17, ×72；18, ×180.
Sorghum vulgare Pers.

1. 壳的横切面 ×68.
2. 壳的分離材料,注意表皮 ×96.
3-4. 壳的分離材料 ×96.
高粱 Sorghum vulgare Pers.

1. 莖鞘的表皮 ×360.
2. 莖鞘单层的表皮细胞 ×360.
3. 茎的表皮细胞 ×360.
4. 纤维的横切面 ×845.
5. 苞叶的石细胞 ×360.
6-7. 纤维 ×180.
8-12. 薄壁细胞 ×72.
甘蔗 *Saccharum officinarum* L.

1. 茎的横切面 ×96. 2. 茎的表皮 ×96. 3-4. 茎的分離材料 ×96.
甘蔗 *Saccharum officinarum* L.

1. 茎的表皮 ×360. a. 木栓细胞, b. 砂细胞. 2. 茎的单层的表皮细胞 ×360. 3. 纤维横切面 ×545. 4a. 末端分叉的纤维 ×72. 4b. 4a 的一部分放大 ×360. 5-6. 纤维 5, ×72; 6, ×360. 7-13. 薄壁细胞 ×72.
蘆葦 *Phragmites communis* Trin.

1. 蒂的橫切面 ×96.
2. 石細胞 ×285.
3. 稻管分子 ×385.
4. 稻管的表皮 ×385.
5. 蒂的分離材料 ×96.
6. 稻管的橫切面 ×545.
7. 稻管 ×360.
8. 茎壁上有裂隙的稻管 a, x72; b, a 的一部分放大 ×360.
9. 稻管 a, x72; b, a 的一部分放大 ×360.
10. 稻管 ×360.
11-12. 石細胞 11, ×180; 12, ×360.
蘆葦 Phragmites communis Trin.

1-3. 薄壁細胞 ×360. 4-5. 草稈的表皮 ×360. 6. 草的表皮 ×360. 7. 草稈的表皮 ×360.
8-10. 13-15. 石細胞 ×360. 11-12. 薄壁細胞 11a, ×72; 11b, 11a 的一部分放大 ×360;
12, ×180.
秆 Miscanthus sp.

1. 针的横切面 ×96. 2. 茎部的分隔材料 ×96, 注意表皮. 3. 维管的一部分 ×576. 4. 茎

部的分隔材料 ×96. 5. 针的分隔材料 ×96.
獲 Miscanthus sp.

1. 茎鞘的表皮 ×360. 2-4. 茎的表皮 ×360. 5. 纖維的橫切面 ×545. 6-9. 纖維胞壁的結構 6-8, ×360; 9, ×360. 10. 纖維 ×72. 11a. 叶細胞 ×72. 11b. 11a 的一部分放大 ×360. 12-13. 薄壁細胞 ×180.
龍鬚草 *Eulaliopsis binata* (Retz.) Hubbard.

1. 葉的橫切面 ×40。 2-3 葉的分離材科 ×96，注意葉皮。 4. 葉的分離材科 ×96，注意纖維。
龍鬚草 *Eulaliopsis binata* (Retz.) Hubbard.

1-3. 條的表皮 ×360. 4-5. 細胞較薄的纖維 ×360，注意胞內乳狀物質. 6. 細胞較厚的纖維 ×360，注意胞壁外有一層薄膜狀的細胞. 7-8. 細維的橫切面 ×545. 9-10. 膜壁細胞 ×360.
茂茂草 Achnatherum splendens (Trin. Ohwi)

1. 茎的横切面 ×96. 2. 果穗的表皮 ×96. 3. 果的分離材料 ×96. 4. 茎的分離材料 ×96.
Achnatherum splendens Ohwi.

南竹 *Phyllostachys edulis* A. & C. Riv.

1. 垂的横切面 ×22. 2. 垂的分層材料 ×46. 3. 纖維 ×335. 4. 垂的表皮 ×360. 5. 纖維的橫切面 ×545. 6. 薄壁細胞 ×360. 7-10. 坚細胞 ×360. 11b. 具極隔的纖維 ×72. 11b. 11a 的一部分放大 ×350. 12. 細粒壁細胞 ×360. 13-14. 纖維 ×360.
慈竹 Sinocalamus sp.

1. 茎的横切面 ×32. 2. 茎的分跡材料 ×96. 3. 總管分子 ×96. 4. 茎的表皮 ×360.
5. 網狀壁細胞 ×360. 6-8. 薄壁細胞 ×360. 9. 腔壁較薄的纖維 ×360. 10. 腔壁較厚的纖維 ×360. 注意腔壁外具薄的膜質鞘. 11. 纖維的橫切面 ×545.
亞麻 Linum usitatissimum L.

1. 植的燥切面 ×90. 2. 分離材料 ×90. 注意纖維. 3. 烏纖維末端稍彎曲的纖尖 ×72.
4-6. 烏纖維的末端 4, 6, ×350; 5, ×72. 7. 烏纖維的乾切面 ×545 8-9. 烏纖維的一部分 ×300.
大麻 Cannabis sativa L.

1-2. 壁的横切面 1, ×96; 2, ×192. 纤维在基部的排列。3. 分离材料 ×96. 4, 5, 7. 纤维的末端 4, ×72; 5, 7, ×360. 6. 纤维的一部分; 纤维未端的直径与中部的相差不多 ×50.

8-9. 纤维的一部分 ×360. 10. 纤维的横切面 ×545.
齒麻 *Abutilon avicennae* Gaer.

1. 幼的橫切面 ×96. 2. 分離的材料 ×96. 3. 細胞的橫切面 ×545. 4-5. 細胞的末端 ×72.
6. 細胞的一部分 ×360. 7-9. 細胞的部分 ×360. 10. 細胞 ×72.
棉 (Gossypium sp.)

1. 垂的横切面 ×96
2. 分離的材料 ×96
3-8. 纖維的末端 ×360
9-10. 纖維的一部分 ×360
11. 纖維的横切面 ×545
1. 菱形横切面 ×68。 2. 分離的材料 ×96。 3-9. 纖維的末端 3, 4, 7, ×72；5, 6, 8, 9, ×180。10-11. 纖維的一部分 ×360。12. 纖維的縱切面 ×545。

三棱属 Edgeworthia chrysantha Lindl.

Image and figure descriptions:
- Image 1: Detailed view of the surface of a plant material.
- Image 2: Close-up of a fiber-like structure.
- Diagrams 3-12: Various illustrations of plant parts and fibers with different magnifications.
桑 *Morus alba* L.

1. 竖的横切面 ×96. 2. 分離的材料 ×96. 3. 纖維的横切面 ×545. 4. 纖維的一部分 ×350.
5-7. 纖維的末端 5-6. ×180; 7. ×72. 8a. 含有脅狀物質的纖維 ×72. 8b. 8a 的一部分放大 ×360.
構 Broussoentia papyrifera Vent.

1. 稻的橫切面 ×60.
2. 分離的材料 ×96.
3-6. 細纖的末端 ×180.
7-9. 細纖的一部分 ×360.
10. 細纖的橫切面 ×545.
注意

1. 借書到期請即送還。
2. 請勿在書上批改圈點、折角。
3. 借去圖書如有損壞遜失等情形需照價賠償。