Bidrag til Danmarks tertiære og diluviale Flora.

Af
N. Hartz.

With an English Summary of the Contents.

Hertil 1 Atlas med 13 Tavler.

København.
I Kommission hos C. A. Reitzel.
1909.
Denne Afhandling er af det mathematisk-naturvidenskabelige Fakultet antaget til offentlig at forsvares for den filosofiske Doktorgrad.

C. Christiansen,

d. A. Dekan.
FORORD.

Den Mand findes ikke, der alene, uden Hjælp fra talrige Specia-
listier, kan gennemføre en ordentlig Undersøgelse af en Torvemose
eller et Brunkullag. En Undersøgelse af ældre Formationers Lag
kræver Samvirken af geologisk (petrografisk-stratigrafisk) og palæonte-
logisk (zoologisk-botanisk) Viden. En Torvemose-Undersøgelse stiller
endnu større Krav til Undersøgeren; thi i Torven kan findes Represen-
tanter for næsten alle Dyrelivets og navnlig for alle Plantelivets
forskellige Hovedgrupper. Ordentligt og fuldstændigt gennemført skal
en Torve-Undersøgelse redegøre for Torvens Indhold af højere og
lavere Dyr, Alger og Svanpe, Mosser, Karkryptogamer og Faneroga-
mer, ikke blot de makro- men også de mikroskopiske Elementer i
Torven — eventuelt dens arkæologiske Indhold. Det er ikke for
meget sagt, at Undersøgelsen af en enkelt lille Torveprove kunde
skaffe en enkelt Mand Arbejde et langt Liv igennem, om hver enkelt
Plante- og Dyrerest skulde omhyggeligt undersøges og bestemmes —
og dog måtte vistnok meget lægges til Side, selv om Undersøgeren
vart helt og fuldt ud paa Højde med Nutidens Viden paa alle de for-
skellige Omraader, som Undersøgelsen nødvendigvis måtte komme
til at behandle eller tangere.

Medens man, naar det drejer sig om vor postglaciale Torv
og tilsvarende Lag (Ferskvandsler, Gytjer o. s. v.), endnu har den
store Fordel at vide — eller dog foreløbig kan gaa ud fra — at
Torven (eller den tilsvarende Jordart) kun indeholder nulevende
nordeuropæiske Organismer, stiller Forholdet sig allerede noget van-
skeligere, saasnat man beskæftiger sig med vore diluviale Lag.
Erfaringen har allerede vist, at Lag fra sidste Interglacialtid inde-
holder Fro og Frugter af Arter, der ikke længer lever i Nordeuropa,
overhovedet ikke i Europa eller Eur-Asien, men som vi maa søge til
Amerika for at finde i Live i Nutiden (Dulichium spathaceum).
Mange af de Fro og andre Planterester, som vi europa-
IV

ontologer ikke kan bestemme, vil sikkert ved et intimere Samarbejde med vore amerikanske Kolleger vise sig at være amerikanske Borgere.

Endnu vanskeligere stiller Sagen sig, naar vi kommer til Tertiærtidens Lag, hvis Plante- og Dyrecester kræver Kendskab til Tropernes og Subtropernes Plante- og Dyreliv — et Kendskab, som ingen Palæontolog besidder i saa høj en Grad som en omhyggelig Løsning af Spørsmaalet kræver.

Naar en Undersøgelse af vore postglaciale og interglaciale Aflejringer faktisk endnu volder saa store Vanskeligheder og — i hvert Fald foreløbig — maa lade saa mange Spørgsmål uhesvarede, saa mange Rester — baade af Dyr og Planter — ubestemte, er det overflodigt nærmere at paapenge, hvor fragmentarisk og ufuldstændig en palæontologisk Undersøgelse af et tertiært Lag nødvendigvis er og maa være — og i lange, lange Tider vil vedblive at være.

Siden min Ansettelse i 1896 ved „Danmarks geologiske Undersøgelse” som Phytopalæontolog har jeg været beskæftigt med Undersøgelsen af vore Moser og Brunkul; jeg har betragtet det som min Opgave ikke at levere de flest mulige Artslister fra Torv, Ler eller Kul, men at faa et Overblik over Plantelivets Udvikling i de Tidsrum, fra hvilke vort Land overhovedet indeholder planteforende Aflejringer, altsoa fra Tertiærtiden, Istiden og „Nutiden“1).

I det hele taget turde det være paa Tide, at vi herhjemme foretog en Række Dythedsekringer til anselig Dybde, vist nok helst i det sydlige Jylland, for at faa Klarhed over, om vor Jordbund ikke under Kridtbjærgarterne eller i disses nedre Lag skulde indeholde

1) Foreløbig har jeg ganske set bort fra Bornholms mesozoiske Flora.
værdifulde Lag 1). Jeg vil i denne Sammenhæng ogsaa minde om saadan Dybdehoringers videnskabelige Interesse.

I den foreliggende Afhandling haaber jeg at kunne hyde de faa samtidige Mænd, der arbejder paa samme Omraade som jeg, noget — om end kun lidet — af en vis Interesse for vort fælles Studium, som vel ikke horer til de Grene af Videnkaben, der kan fore til store og for Menneskeslægten afgorende Resultater, men som i alle Fald skaber sine Dyrkere den samme Erkendelsens og Ny-Opdagelsens Glæde som alle andre Studier, der ikke blot er mekanisk Arbejde og Gentagelse 2).

Hyv mit Arbejde bringer af Nyt og af Betydning for Geologer, Botanikere og andre, der ikke selv arbejder paa dette Felt og derfor nøppe er i Stand til helt at vurdere Arbejdets Vanskelligheder, Resultater og Mangler, skal jeg ikke her udtale mig om; kun ønsker jeg det ovenfor sagde — om Arbejdets Vanskellighed — opfattet som en Forklaring af — ikke som en Undskyldning for — at denne Afhandling ikke har vist sig paa Bogmarkedet for nu.

At Arbejdet har Mangler, ser ingen skarpere end jeg selv. Som en Hovedmangel fremhæver jeg, at Pollen-Undersøgelser ikke er foretagne i tilstrækkelig Mængde; de af Professor Dr. G. LAGERHEIM, Stockholm, foretagne mikroskopiske Analyser af Brunkul-Gytje, diluvial Torv og Gytje er langt bedre og fuldstændigere end jeg kunde gøre det, idet jeg hidtil ikke personligt har lagt tilstrækkeligt Vægt paa Pollen-Undersøgelser.

En anden Mangel ved dette Arbejde, Manglen af en udförlig Sammenstilling af mine Undersøgelser af de danske interglacial Moser med de tilsvarende Moser i det øvrige Europa og Nordamerika, faar jeg forhaabentlig Lejlighed til at rette i en følgende Afhandling.

Til Slut tillader jeg mig at rette en varm Tak til følgende Forskere for elskværdig Bistand med Bestemmelse af Dyre- og Plante-rester:

† Apoteker BAAGØE (Potamogelon).
Dr. A. BOVING (Donacia).
Cand. pharm. A. HESSELBO (Mosser).
Cand. mag. AD. JENSEN (Fisk).
Apoteker CHR. JENSEN (Mosser).
Prof. DR. H. JÜNGERSEN (Fisk fra Ejstrup).
Prof. DR. G. LAGERHEIM (Pollen m. m.).

3) Jeg har aldrig sat Pris paa »Konstatierung einer nocht nicht konstatirten Tat-sache« — naar denne i og for sig var ligegyldig og ikke stilledes i Sammenhæng.
Dr. P. Menzel (*Laurus*).
Rektor, Dr. L. M. Neuman (*Betula*).
Frk. Irene Petersen (*Potamogeton*).
Prof. Dr. O. G. Petersen (Ved).
\(\frac{}{1} \) Prof. Dr. E. Rostrup (Svampe).
Cand. phil. H. Schlick (Insekter).
Viceinspector H. Winge (Hvirvedyr).
Cand. polyt. E. Østrup (Diatoméer).

N. Hartz.
INDHOLD.

Indledning... 1
Tertiære Aflejringer.. 12
Cementsten... 12
 Planterester i Cementsten.. 12
 Cementstenens Alder... 19
Brunkul... 21
 Tidligere kendte Lokaliteter.................................... 21
 Nye Lokaliteter... 23
 Holstebro... 23
 Viborg... 24
 Norre Omme.. 24
 Tanderup Kær pr. Studsgaard Station....................... 25
Troldhede-Egnen.. 26
 Skærbækgaard.. 26
 Fiskebæk.. 27
 Norre Vinum.. 27
Brande-Egnen.. 28
 Fasterholt... 28
 Landfod.. 29
 Sandfeldgaard.. 29
Skarild... 44
Rind... 44
Silkeborg-Egnen.. 44
 Sonderskov... 44
 Salten... 49
 Voldborg Kær... 50
 Gjedso Skov.. 50
 Dallerup Mark.. 51
Horsens... 51
Vandel... 53
Bindeballe.. 53
 Skovlyst pr. Brørup.. 53
Brunkullenes Planterester.. 53
A. Højere Planter.. 54
B. Alger... 60
IX

Planteforende Lag ved Kolding ... 232
Diluvial Torv paa Lyngs Odde ... 236
Mose ved Rostrup .. 236
Mose ved Silkeborg .. 238
Andre Lokaliteter i Jylland .. 239
Den fynske Ogruppe ... 241
Sjælland ... 241
Tjornegaards Teglværksgrav ved Gjentofte 241
Birkerød 245
Grevinge ... 245
Møen ... 246
Bemærkninger om den interglaciale Flora og Fauna 246
Bemærkninger om de geologiske Forhold 252

Fortegnelse over Danmarks interglaciale Flora og Fauna (ekskl. den marine Flora og Fauna) ... 255
Fortegnelse over benyttet Litteratur 266
Summary of the contents ... 273
<table>
<thead>
<tr>
<th>Figur.</th>
<th>Side.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ejerslev Klint paa Mors, 1903. Moler-Skærent</td>
<td>13</td>
</tr>
<tr>
<td>2. Tværsnit af Skjerne-Aadalen ved Sandfeldgaard, efter Dalgas</td>
<td>29</td>
</tr>
<tr>
<td>3. Profil i »Kulminen«, Sydskærenten af Skjerne-Aadalen, 1906</td>
<td>30</td>
</tr>
<tr>
<td>4. Profil i Skjerne-Aadalen, 500 m. Nordvest for »Kulminen«</td>
<td>31</td>
</tr>
<tr>
<td>5. Kort over Egnen ved Sandfeldgaard</td>
<td>32</td>
</tr>
<tr>
<td>6. »Kulminen« ved Sandfeldgaard, 1906, set fra Nord</td>
<td>35</td>
</tr>
<tr>
<td>7. Skærent med Brunkul, tæt Ost for »Kulminen«, ved Skjerne Aa, 1906</td>
<td>37</td>
</tr>
<tr>
<td>8. Salten-Profilen</td>
<td>45</td>
</tr>
<tr>
<td>9. Salten-Profilen</td>
<td>47</td>
</tr>
<tr>
<td>10. Udsnit af Generalstabens Maalebordsblad Tem.</td>
<td>51</td>
</tr>
<tr>
<td>11. Brunkul-Gytje fra Sandfeldgaard</td>
<td>72</td>
</tr>
<tr>
<td>13. Sandblok i den nedre Moræne, Valby Bakke, 1896</td>
<td>95</td>
</tr>
<tr>
<td>14. Bovbjerg Klint udfor Fyret, efter Rosenkjær</td>
<td>103</td>
</tr>
<tr>
<td>15. Kort over Brørup og Tuesbøl</td>
<td>140</td>
</tr>
<tr>
<td>16. Lavningen over den interglaciale Mose paa Tuesbøl Mark</td>
<td>161</td>
</tr>
<tr>
<td>17. Mosen ved Skovlyst, Udsnit af Generalstabens Maalebordsblad</td>
<td>178</td>
</tr>
<tr>
<td>18. Mosen paa Lervad Mark, Udsnit af Generalstabens Maalebordsblad</td>
<td>182</td>
</tr>
<tr>
<td>19. Hollund Søgaard og Omgivelser, Udsnit af Generalstabens Maalebordsblad</td>
<td>192</td>
</tr>
<tr>
<td>20. Mosen ved Hollund Søgaard</td>
<td>193</td>
</tr>
<tr>
<td>21. Mosen ved Hollund Søgaard (Grav A)</td>
<td>195</td>
</tr>
<tr>
<td>22. Profil i Mosen ved Hollund Søgaard</td>
<td>197</td>
</tr>
<tr>
<td>23. Ejstrup</td>
<td>205</td>
</tr>
<tr>
<td>24. Ejstrup, Udsnit af Generalstabens Maalebordsblad Kolding</td>
<td>206</td>
</tr>
<tr>
<td>25. Ejstrup, Profil A</td>
<td>207</td>
</tr>
<tr>
<td>27. Ejstrup. Profil B. Østlige Fortsættelse af Fig. 26</td>
<td>215</td>
</tr>
<tr>
<td>28. Ejstrup. Profil B. Detailbillede af Fig. 27</td>
<td>217</td>
</tr>
<tr>
<td>29. Ejstrup. Profil B. Østligste Del af Profilet</td>
<td>219</td>
</tr>
<tr>
<td>30. Udsnit af Generalstabens Maalebordsblad Kolding</td>
<td>232</td>
</tr>
<tr>
<td>31. Grusgraven ved Skovmollen ved Kolding, 1902</td>
<td>233</td>
</tr>
<tr>
<td>32. Mosen ved Rostrup, Udsnit af Generalstabens Atlasblad Jelling</td>
<td>237</td>
</tr>
<tr>
<td>33. Interglacial? Torv i Tjornegaards Teglværksgrav ved Gjentofté</td>
<td>242</td>
</tr>
<tr>
<td>34. Tværsnit af præsade Potamogeton-frukter (Gunnar Andersson)</td>
<td>244</td>
</tr>
</tbody>
</table>
TRYKFEJL OG RETTELSE.

S. 91, L. 4 f. n. Stratiotes Websteri læs Stratiotes Kullenordhemensis.
Indledning.

Kendskabet til den danske Floras Udviklingshistorie før Istiden var hidtil yderst ringe, nærmest begrænset til Bornholms rige Rhæt-Lias-Flora og Molerets tertiære Diatoméer. Forst fra interglaciale, senglaciale og postglaciale Lag foreligger der Materiale til en begrundet Mening om disse Tidsrumms Plantevækst, selv om endnu en Mængde Detail-Spørgsmål også for disse yngre Tidsrumms Vedkommende venter paa Svar.

Fra det bornholmske Kridt, Arnager-Kalken, omtaler Johnstrup (1876) Fucoides Lyngbyanus, Confervetes fasciculata og Confervetes ægagropiloides som bestemte af A. Brongniart; men det er vel (som allerede Johnstrup bemærker) tvivlsomt, om disse „Alger“ virkelig er Planter. De eneste kendte Planterester fra Bornholms Kridt er de rullede Kulstykker, borede af Boremuslinger, som man ifølge vel-

1) Det er forhævende faa Bornholmske og Skaanske Blokke med bestemmelige Planteforsteninger fra Jura og Rhæt, der er fundne i Danmark; publiceret er kun K. Bør-

Fra Holsten angiver Gottsché (1883) en rhætisk Sphærosiderit med *Nilssonia polymorpha* og andre Arter, som han antager stammer fra Höganäs.
villig Meddelelse af Dr. K. A. Grönwall, ikke sjældent har iagttaget i Grønsandmergelen ved Arnager; men den Mulighed, at de stammer fra Rhät-Lias-Lagene, er ganske vist ikke udelukket.

Fra Kridttidens forskellige Bjærgarter i det øvrige Danmark kendes hidtil ikke en eneste sikkert bestemt Landplante. Den gamle Angivelse hos FORCHHAMMER (1858, S. 14), at vi „i Kridt-perioden finde de første noget svage og udydelige Tegn paa, at en Del af Danmark har været hævet over Havets Overflade“, og at der i Grønsandet „skjønnt ikke ofte forekommer en Levning af en Landplante, hvilket er aldeles ukjendt i vor Skrivekridts Dybvandsdannelse,“ er ikke meget oplysende. Muligvis hentyder FORCHHAMMER her til Forekomsten af Smaapinde og Kul i de nu til Eocen henførte glaukonitiske Bjærgarter.

Det henstaar endnu uafgjort, om der i Kridttiden har været Land paa det nuværende Danmarks Plads (bortset fra Bornholm); J. P. J. Ravn (1903) har som bekendt paapeget, at Fiskeleret i Stevns Klint muligvis antyder et dansk Kridttids-Land, men A. HENNIG (1904) har bestemt udtalt sig derimod 1).

Den skænske Köpinge-Sandsten, der vel maa opfattes som vort Skrivekridt-Havs Stranddannelse, indeholder enkelt fragmentariske Levninger af Bregner, Naaletraer og Lovtraer; hyppigst er Blade af Dewalqua Nilssonii (Helleborew.);

End ikke i Flint fra danske Kridtlag kender man et eneste sikkert Fund af forkyldet Tra 2); man behøver dog ikke at gaa længere mod Syd end til Holsten for at finde Tra i Flint; ved Itzehoe samlede G. HAAS (1891) Koniferved i en Flintknold; A. WICHMANN (1894) har i den Anledning sammenstillet en Del ældre Fund af fossilt Ved i Flint.

Vort Kendskab til Kridttidens marine Flora er ikke meget større end til Landfloraen. Paa Forhaand maatte man vente at finde talrige

1) Jeg har undersøgt flere Prøver af Fiskeler fra Stevns Klint uden at finde Diatoméer i dem. Hr. cand. polyt. E. OSTRUP har meddelt mig, at han ligeledes tidligere gentagne Gange har undersøgt Fiskeler uden at finde Diatoméer i det.

I en lille Prove Fiskeler, som Hr. OSTRUP paa min Anmodning undersøgte i 1906, fandtes endelig nogle faa Diatoméer:

Amphora (an lineolata??), Arten ubestemmelig og

Fragilaria mutabilis, 2 Eksemplarer.

Plankton-Former, og Skrivekridtet bestaar jo ogsaa for en væsentlig Del af Coccolither (Coccosphaera), men Diatoméer er hidtil kun omtalte af K. Rørdam (1897) fra Saltholmiskalk (Foraminiferkalk), og det endda med megen Tvivl.

Muligvis vil en senere Undersøgelse bringe fyldigere Oplysninger om Kridthavets Diatomellipsis; H. Hanssen (1901) omtaler, at der ret ofte findes (Radiolarier og) Diatoméer i Flint og Kridt (i Holsten?), og L. Cayeux (1897) angiver talrige Diatoméer fra Flint og Kridt i Pariser-Bækkenet.

Sandsynligvis har talrige Plankton-Diatoméer levet i Kridthavet; men Diatomé-Skaller kan som bekendt oploses i Havvandet, naar de efter Organismens Død langsomt synker til Bunds paa storre Havdybder; og desuden kan Diatomé-Skaller meget vel oprindelig have været til Stede i Kridtslammet i anseelig Mængde og senere være blevne oplost og benyttede ved Flintens Dannelse. Rørdam (1897) gør den Bemærkning, at de i Foraminiferkalken sporadisk optrædende Kvartskorn muligvis er opstaaede ved Omkrystallisation af den i Spongieneale og Diatoméskeletter værende Kiselstyre; det forekommer mig dog sandsynligt, at Diatoméer har bidraget i ligesaa betydelig Grad til Dannelsen af Flint. — I denne Sammenhæng kan mindes om, at forskellige franske eocene Lag (f. Eks. i Cantal) indeholder Ferskvandsflint, der vel maa antages danned væsentligt af Diatoméer, selv om naturligvis Ferskvandssvampe (Spongiller) ogsaa kan have deltaget i dens Dannelse.

Det danske Kridts Coccolither har aldrig været Genstand for Undersøgelse.

De af P. F. Reinsch (1905) opdagede Palinosphærer i Flint fra Skrivekridt er hidtil ikke omtalte fra det danske Kridt; disse smaa kugleformede Legemer (73—85 μ i Tværsnit), som Reinsch fandt konstant i Flint fra Skrivekridt, anses han for Phycochromaceer.

Medens det, som nævnt, endnu er uafgjort, om nogen Del af Danmark i Kridttiden har været hævet over Havet, synes der at være almindelig Enighed om, at Dele af Landet under de senere Afsnit af Tertiær-tiden har ligget over Havet. Forchhammer (1858, S. 14—15) udtaler sig paa følgende Maade herom: „Tydeligere træder det i den tertiære Tid frem, at en Del af Danmark dengang allerede har været hævet over Havet. Flere af Øerne og Kysterne omkring den vestlige Del af Limfjorden ere dannede i den tertiære Tid. som det synes samtidig med Brunkuldannelsen, men de Forsteninger, der forekomme, ere Ferskvandsdannelser, kun hist og her blandede med Levninger af Saltvandsdyr. Det er en Basindannelse, hvor man ganske tydelig seer, at Randene omkring Ferskvandssoen vare Kridt. Ogsaa de talrige Brunkullag fra hine Tider med deres Rav og Forsteninger af Naale-
træarter, ledsagede af Levninger af Sødyr, hentyde paa et i Nærheden liggende, over Havet hævet Land De bornholmske og skaanske Jurakul vise nemlig det samme Phænomen, som Brunkullene i Jylland, at Planterne, der have dannet Kullene, forallerstordetden ere Landplanter, medens Dyrellevningerne, der ledsage dem, henbære til det salte Vand." Medens FORCHHAMMER nu af de fine Bregneblade "i de Kullene ledsagende Stenmasser" slutter, at de bornholmske Plantelevninger, der ere forvandlede til Kul, ikke som Drivtømmer kunne være komne fra langt bortliggende Lande", udtaler han ikke noget bestemt om de jydsk Brunkuls Danncelsesmaade.

Johnstrup, som (1873) vistnok var den første, der (iovyrt uden nærmere Begrundelse) henforte de jydske Brunkul til Miocen, udtrykker sig (1875) saaledes om deres Dannelsesmaade: Medens Brunkulle ne i Tyskland er "afsatte i store Bassiner nær Stedet, hvor de Planter voxede, der have afgivet Stof til Brunkullagene, eller med andre Ord ere en Ferskvandsdannelse, der er opstaaet paa en lignende Maade som Nutidens Torvemoser" tyder Forholdene "hos os derimod, hvor alle Brunkulformationens Forsteninge ere Saltvandsdyr, uden at der hidtil i Lægagene er bundet Levninger af Blade eller Frugter" "paa, at Træstammerne snarest maa antages at være hidforte andetstedsfra ved Floderne og samlet histo og her paa sumpede Strandbredder, en Dannelsesmaade, der hverken giver meget regelmæssige Lag eller gode Kul." Paa samme Maade udtaler Johnstrup sig i 1877.

Hos N. V. Ussing (1899) finder vi den første samlede Oversigt over Fordelingen mellem Land og Vand i Danmark i Tertiærtidens forskellige Afsnit; Brunkullene henfores her til Miocen, og Ussing antager, at Danmark og de nærmest tilgrænsende Egne i Pliocentiden efter at Sandsynlighed var helt hævet over Havet. Moleret og Cementstenen antages at stamme fra Slutningen af Eocentiden og den første Del af Oligocentiden.

Senere har J. P. J. Ravn i flere Afhandlinger (1906 og 1907) ud-
talt sig om vore Tertiærlags Alder; Kullene anser han for nedre-miocene, Moleret med Tvivl for øvre-oligoceent.

De talrige Stammer af Naaeletrær, der oftere omtales i Litteraturen som forekommende i de jydske Brunkullag, er blevne undersøgte af Chr. VAUPEL, hvis Manuskript fra 1853 først blev trykt (uden Figurer) i 1906. VAUPEL omtaler kun én Art fra faststaaende Brunkul (Them ved Salten), nemlig Pinites Fausbollianus VAUP., der staar nærmeist GOEPPELS Pinites Eichwaldianus.

I Glimmerler og Glimmersand forekommer ofte fladtrykte Grene og Stammer, der ikke er blevne nærmere undersøgte1). I Glimmerleret i MORSUM KLíFF paa Syll fandt VAUPEL (l. c.) Pinites Zeuschnerianus GOEP.

De store Træstammer, som FORCHHAMMER (1842) omtaler fra Cementsten i Thy, beskrev VAUPEL (l. c.) som Pinites Forchhammeri.

Ogsaa i plastisk Ler har man, ifolge velvillig Meddelelse fra Docent J. P. J. RAVN, fundet Ved (pyritiseret, fra Branden Teglværk i Nord-Salling, og fra Cilleborg mellem Mariager og Hobro).

I den eocene Lellinge Grønsandkalk har man — som ovenfor nævnt — fundet Træ og Kul, og JOHNSTRUP (1876) angiver, at O. MÖRCH i denne Bjærgart har fundet Teredo-Bor, „som uden Tvivl har siddet i Træ, hvoraf der findes Spor.“

I 1897 meddeler J. P. J. RAVN det vigtige Fund af Daphnogene Kanei HEER („funden i Cementsten af Professor N. V. USSING og bestemt af N. HARTZ“), det første bestemmelige og bestemte Blad i den danske Tertiærlflora. E. STOLLEY (1899) benytter dette Blad som Stotte for sin Opfattelse af Moleret som eocent, idet Arten tidligere er kendt

1) I en Grusgrav ved Brabrand Station fandt Adjunkt MATH. MÖLLER (1905) en Del forkulde Smaapinde i hvidt Glimmersand, vist nok paa primært Leje. Fra Kæmper l. O. BRANDORFF i Kolding modtog jeg 1906 nogle Smaapinde med paasidende Barke, fundne i Glimmersand af Brondbører Lund i Kolding By, e. 40 m. under Jordoverfladen. Ifolge Prof. Dr. O. G. PETERSEN er disse Pinde af et »Løvtræ, nærmest i Retning af E1«.

Han anfører ialt 9 Arter fra Moleret:

Coscinodiscus Oculus Iridis Ehrbg.
— *radiatus Ehrbg.*

Hemiastus Protus P. A. H.
— *hostilis* P. A. H.
— *februatus* P. A. H.

Trinacria Regina P. A. H.
— *excavata* P. A. H.

Solium exsculptum P. A. H.

Corinna elegans P. A. H.

Senere har talrige Diatomé-Forskere beskæftiget sig med Molerets og Cementstenens smukke, velbevarede Diatoméer; hos Stolley (1899) findes en vistnok fuldstændig Liste over de hidtil kendte Arter og Varieter (ialt 92) og den herhen hørende Litteratur; for at have samlet paa ét Sted alt, hvad jeg for Tiden kender af Planter fra Tertiærtidens Danmark, optrykkes Stolley's Liste; Arterne har jeg af praktiske Hensyn ordnet alfabetisk efter Slægter.

Actinoptychus Klausei A. Schm.

Anulacodiscus crux var. *glacialis Grun.*
— *excavatus* A. Schm.
— var. *apiculata Rattr.*

— *Solittianus Norm.* var. *jullandica KITTON*
— *suspectus* A. Schm.

Chætoceros? clavigeros Grun.

Coscinodiscus annulatus Grun.
— *antiquus* Grun.
— ?— *cfr. argus* Ehrbg. var.
— *centralis* Ehrbg.

1) Af Forchhammer, jfr. ovenfor S. 3.
Coscinodiscus crassus var. Morsiana Grun.
- excentricus Ehrbg.
- exigus Rattr. var. æqualis Rattr.
- imperfectus Grun.
- lineatus A. Schm.
- oculus iridis Ehrbg.
- ludovicianus Rattr. (= Janischia antiqua Grun.)
- Moelleri A. Schm.
? - radiatus Ehrbg. var.
- subtilis Ehrbg. var. lineolata Rattr.
- symbolophorus Grun.
Craspedodiscus Klavseni A. Schm.
- Moelleri A. Schm.
Denticella Heibergii Grun.
Eunotogramma variabile Grun.
Goniothecium Odontella var. danica Grun.
Hemianthus affinis Grun.
- alatus Grev.
- ? ambiguus Grun.
- antiquus Grun.
- danicus Grun.
- (Corinna) elegans Heib.
- februatus Heib.
- fragilis Grun.
- hostilis Heib.
- Kittoni Grun.
- Mitra Grun.
- " var. areolata Grun.
- mirus A. Schm.
- pungens Grun.
- polymorphus var.? Morsiana Grun.
- " frigida Grun.
- Proteus Heib.
- Weissii Grun.
Hyalodiscus aff. subtilis Bail.
Omphalotheca jutlandica Grun.
Odontotropis carinata Grun.
- cristata Grun.
Paralia concentrica A. Schm.
- ornata Grun.
- recedens A. Schm.
Paralia sulcata EHRBG.
— var. biseriata f. coronata GRUN.
Pseudostictodiscus angulatus GRUN.
Pseudotriceratium fallax GRUN.
Pterotheca aculeifera GRUN var.
— carinifera GRUN.
— dubia GRUN.
— Kiltoniana GRUN.
Pyrgodiscus Kinkeri PANT.
Pyxilla? baltica GRUN.
Raphoneis Morsiana GRUN.
— lanceolata var. jutlandica GRUN.
Sceptroneis? gemmata GRUN.
Skeletonema? penicillus GRUN.
Solenia exsculptum HEIB.
Stephanogonia? danica GRUN.
Stephanopyxis turris var. cylindra GRUN.
— f. inermis GRUN.
— var. parvispina GRUN.
— var. paucispina GRUN.
Stictodiscus Morsianus A. SCHM.
Triceratium abyssorum GRUN.
— flos GRUN.
— Heibergianum GRUN.
— Kinkeri A. SCHM.
— maculatum KITTON
Trinacria excavata HEIB.
— Heibergii KITTON
— var. sparsim punctata A. SCHM.
— Kiltoniana GRUN.
— paradoxa GRUN.
— pileolus var. jutlandica GRUN.
— regina HEIB.
— var. punctulata GRUN.
— " tetragona GRUN.
— Willii A. SCHM.
Trochosira mirabilis KITTON var.
— ornata GRUN.
— spinosa KITTON var. 1)

1) Det kan i denne sammenhæng nævnes, at P. T. Cleve angiver
Hemiulus sp.
Paralia ornata GRUN. og
Stephanopyxis intermedia GRUN.

Fra vore andre tertiere marine Lag kendes kun nogle faa Diatoméer.

K. Rørdam (1897) har i Grønsandkalk (Eocen) fra Lellinge fundet "Rester af Diatoméer (??)"; de formodede Diatoméer forekommer temmelig sparsomt og i temmelig "søndergnavet Tilstand" (S. 111); ogsaa i Grønsandsten sammete fra fandt Rørdam "enkelte meget angrebne, tvivlsomme Rester af Diatoméer" (S. 115); i Lellinge Grønsandkalk har K. A. Grønwall fundet pyritiserede Diatoméer, deriblandt Trinacria.

Forkislet og forkullet Træ, antagelig til Dels tertiert, findes ret almindeligt udbredt i vore Istidslag som lose Blokke; efter mine Erfaringer er forkuldet Træ langt almindeligere end forkislet. Fra en Teglverksgrav ved Bræminge har jeg erhvervet et stort, smukt Stykke forkislet Træ, ved Brande et andet Stykke (vistnok fra Cementsten); fra en Grusgrav ved Randers har jeg ogsaa set et Stykke; men helt almindeligt er forkislet Træ næppe i Danmark.

Af Interesse er en Angivelse hos L. Meyn, at han har fundet forkislet Træ in situ i det hvide Glimmersand ved Mallis, som ifolge Gottsché ikke kan være ældre end øvreoligocent. I "Koralsandet" ved Stolpe findes lokale Ophobninger af forkislet Træ (Gottsché, 1885).

I Rav-Pindelagene i Diluvialsandet findes — foruden Jura-Kul — en Mængde forkuldet eller tildels forkuldet tertiert Træ, som først blev undersøgt af Vaupell (l. c.), der henforte det allermeste til

fra 4 forskellige Lag i Cyprinalerets Lagserie i Ristinge Klint, naturligvis paa sekundært Leje (Frithiof Andersson, 1897). Cleve siger om dem kun: »Kommen in miocänen Lagern in Dänemark vor«.

C. CONWENTZ (1892) har undersøgt to i Stockholm opbevarede fossile Træestykker fra Sjælland, af hvilke det ene var en Cupressinoxylon, det andet en Dikotyl. I Mineralogisk Museum i København saa CONWENTZ to Stykker fra Fyen (Rønninge Søgaard og Svendborg), der begge havde Cypres-lignende Struktur. Ifølge CONWENTZ findes „Geschiebeholzer“ hyppigere i Jydlands Diluviallag end paa Øerne (hvilket forøvrigl ogsaa falder sammen med mine Erfaringer); fire Stykker, som JOHNSTRUP overgav CONWENTZ til Bestemmelse (fra fire forskellige, ikke nævnte Lokaliteter) viste sig ligeledes at være Cupressinoxylon.

Fra Slesvig omtaler CONWENTZ baade Cornoxylon, Cupressinoxylon og Cedroxylon. I det hele taget er ifølge CONWENTZ de allerflotteste „Geschiebehölzer“ i Nordtyskland, Holland, Belgien, Danmark og Sverige Cupressinoxylon; de antages at stamme fra tertiære Lag i Nærheden af deres Findesteder.

Fra Sverige kendes — ifølge A. G. NATHORST (1894) — af tertiære Plantestarter, foruden Rav, lose Stykker af Brunkul og forskilet Træ, deriblandt et Stykke af en Palmestamme (Palmacites Filigranuni); Størsteparten af Brunkultræet hører til „Slægten“ Cupressinoxylon. I Basalttuffen ved Djupadal (Skaane) findes Rester af Konifertræ (Pi-nus og Picea, jfr. NATHORST 1880 og B. JONSSON 1882.)

Fra vort sydlige Naboland omtaler GOTSCHE bl. a. en stor Blok af en tæt, smudsiggraad Kvartsit fra Winterhude med talrige Planterester, blandt hvilke P. FRIEDRICH bestemte Sequoia Conttsiae HEER,

1) CONWENTZ angiver ikke, om de undersøgte Træprover var farkislede eller forkullede.
Sequoia Langsdorffii Brongn. sp. og Andromeda prologaea Heer (non Ung.). Lignende Blokke kendes også fra Bralitz ved Oderberg og fra Østpreussen; deres Hjemsted er ifølge Gottsche ubekendt, men sandsynligvis at søge i det baltiske Omraade.

Tertiære Aflejringer.

Cementsten.

Planterester i Cementsten.

I Indledningen er omtalt de Angivelser af Planter i Cementsten, som jeg har fundet i Litteraturen. Jeg skal nu gaa over til Omtalen af de Planterester, der findes i Cementsten i Mineralogisk Museums Samlinger, som jeg med Prof., Dr. N. V. Ussing's Tilladelse har gennemgaaet. Fig. 1 viser en af de mest bekendte Moler-Klinter paa Mors, Ejerslev Klint.

De Planterester, jeg hidtil har bestemt fra Cementsten, er følgende:

- *Carpolithes Furensis* m., Fur.
 - *sphericus* m., Hanklit.
- *Phyllites* sp., Skærbæk, Klitgaard.

I Forbindelse med disse Planter fra dansk Cementsten kan omtales

- *Carpolithes rhabdospermus* (Lesq.) m. og
 - *sphericus* m.

fra en los Blok, fundet ved Brothen i Holsten (se nedenfor S. 18—19).

Pinus cfr. Laricio Thomasiana Heer.
Tavle II. Fig. 2.

Mellem Sillerslevor og Hesterodde paa Mors fandt Frk. Ebba Baumann i 1904 en forstenet Fyrrekogle, aabenbart stammende fra Cementsten; Hr. E. Østrup har nemlig konstateret, at Forsteningsmassen kun indeholder typiske Cementstens-Diatoméer.
Fig. 1. Ejerslev Klint paa Mørs. 1903. Moler-Skrænt.
Koglen, der er skænket til Mineralogisk Museum, er fladtrykt, 8 cm. lang, 3—3,6 cm. bred og 1—2 cm. tyk; den gør Indtryk af at have været rullet, før den blev forstenet, og den er, som Figuren viser, ret ufuldstændig, idet baade Spids og Basis mangler. Nogle af Kogleskællene er dog saa velbevarede, at den, om end med Tvivl, kan henfores til den af O. Heer (1869) afbildede Pinus Laricio Thomasiana Heer (Pinites Thomosianus Goëpp.), der er meget almindelig i Samlands Glimmersand.

Carpolithes Furensis m.
Tavle II, Fig. 3.

I en Cementbolle paa Nordstranden af Fur fandt Dr. K. J. V. Steenstrup, Prof. N. V. Ussing og Dr. V. Wilkens i 1902 denne smukke lille _Carpolithes_.

Den er 3 mm. lang og 2 mm. bred, ægformet, lidt fladtrykt, i begge Ender forsynet med en lav, afrundet Spids; fra Spids til Spids ses 8 fine, lyse Længdestriber paa den mørkebrune, tynde Skal, der synes at have Tilbojelighed til at spalte i to Halvdele.

Denne Carpolithes minder meget om Frugtstenen af _Nyssa aquatica_, jfr. A. Schenks Afbildning (1890, Fig. 338—6).

Carpolithes sphæricus m.

I Cementsten fra Hanklit paa Mors (leg. Prof. N. V. Ussing 1895) findes en kugleformet _Carpolithes_, c. 7 mm. i Tværsnit, udfyldt med Kalkspat (og Svovlkis?); Væggen er c. 0,5 mm. tyk, mørkere farvet; Fragmenter af et papirtyndt, sort, glat Kulovertræk findes paa Carpolithens Overflade, paa hvilken ogsaa ses en lav, svagt afrundet Spids.

Ligheden med recente _Lindera- og Cinnamomum-Frugter_ er overordentlig stor.

Cocculites Kanei Heer
Daphnogene Kanei Heer
Coccylis Kanei Sap. & Mar.
Tavle I, Fig. 1 og Tavle II, Fig. 1.

_I sit klassiske Værk Flora fossilis arctica (I, 1868) beskrev Heer først dette karakteristiske Blad under Navn af _Daphnogene Kanei_ (Tavle XIV og XVI, Fig. 1). Heer’s korte Beskrivelse lyder: „D. foliis coriaceis, oblongis, latitudine quadruplo longioribus, integerrimis, trinerviis, nervis lateralibus acrodromis, apicem attingentibus; petiolo cylindrico, apice incrassato“_. Bladene fandtes ved Atanikerdluk (Vestgrønland, af M’Clintock, Inglefield og OLRK) i Sphærosideritter; paa Tavle XIV afbilder Heer 6 forskellige, til Dels velbevarede Bladfragmenter, der viser det tykke, laderagtige Blads Overside og Under-
side. Bladstorrelsen er noget varierende, med en største Bladbredde af 58—76 mm.; det har været anselige Blade, hvis Længde Heer ansåer til 200—300 mm. Bladstiflen findes kun til Dels bevaret paa et enkelt Blad (Tablæ XVI).

Skægten Daphnogone henføres af Heer til Laurbærerfamilien og betrægtes som en nær Skægligning af Cinnamomum; Skægten betegnes som en „Sammelgattung“, hvori foreløbig anbringes læderagtige, trenervede Lauraceé-Blade, der endnu ikke kan indordnes i nogen bestemt Skægt.

Et lignende Blad henførte L. Lesquerëux (ifølge Heer) til Cinnamomum crassipes.

Med Tvixl (og vistnok med Urette) henfører Heer senere (1883) et Bladfragment fra Unartok paa Disko til denne Art, som han da benævner Cocculites Kanei og henfører til Menispermacce.

I 1873 genfindes Arten af Saporita og Marion i Materialie fra Gelinden (Belgiens Palencen); der fandtes kun et enkelt Brudstykke af et Blad, men dette stemmer efter Afbildningen og Beskrivelsen særdeles vel med Heer's Eksempler fra Grønland; det beskrives udførligt af de to nævnte Forskere under Navn af Cocculus Kanei og antages nært beslægtet med den indiske Busk Cocculus laurifolius DC., der i Modsetning til næsten alle sine Skægtinge blandt Menispermaccele ikke er klatrende; denne Arts Blade har i Virkeligheden fuldstændig Lauracé-Habitus; den opfattes som en sidste Relikt (survivant) af en tidligere større Gruppe af Menispermaccee. Det betones, at der i og for sig ikke er noget overraskende i at finde Menispermacceer (der staar Lauraceer og Magnolier nær) i Europa i Tertiærtiden.

1887 omtaler J. S. Gardner Arten fra de planteførende Lag i Basalten ved Antrim (Nord-IRland) og Ard theological evidence that should be conclusive."

Megnet energisk og overbevisende argumenterer Gardner for, at de grønlandske Tertiærlag er eocene og samtidige med de engelske og belgiske eocene, planteførende Lag.

Som nævnt i Indledningen fandt Prof. N. V. Ussing i 1895 et Blad af denne Art i Cementsten ved Hanklit paa Mors, og i 1902 fandt Dr. K. J. V. Steenstrup, Prof. Ussing og Dr. Wilkens paa Nordstranden af Fur endnu et Eksemplar, et meget smukt, langstilket Blad (Tablæ I, Fig. 1). Dette sidste Blad viser følgende Maal: Længden 10 cm., største Bredder 5 cm.; Bladstilkens Længde 4,4 cm. (nederste Del af Bladstilken mangler). Bladet viser særdeles godt
(bedre end Figuren) Nervationen, der indtil de mindste Detaljer stemmer med Heer's Afbildninger og med recente Blade af Cocculus laurifolius, hvormed jeg har sammenlignet det. Man er i det sjældent heldige Tilfælde paa dette ene Stykke at kunne se Dele baade af Bladets Overside og af dets Underside; ved Stenens Klovnng er Bladet nemlig til Dels spaltet parallelt med Bladpladen. Medens Nervationen er ret utydelig paa Bladets Overside, er det fine Ribbenet paa Undersiden særdeles skarpt og velbevaret.

Bladstilken er betydeligt længere end paa de hidtil kendte Eksemplar af denne Art og viser en tydelig Længdefure, som heller ikke ses paa de ældre Afbildninger; Bladstilken har været meget længere hos den fossile Plante end hos Cocculus laurifolius. Bladet fra Hanklit (Tavle II, Fig. 1) er 8 cm. langt, dets største Brede er 3,3 cm.; Bladstilken er 1,7 cm. lang og knap 2 mm. bred; det viser meget godt Nervationen paa Bladets Overside. Under dette Blad ligger endnu et Blad af samme Art, men kun et lille Fragment er synligt.

I sin Omtale af denne Art i C. Zittel's Palæontologi (II, 1890) siger Schenk, at Smilaceer, Urticaceer, Lauraceer og Menispermaceer har lignende Nervation, og at Blad-Nervationen alene ikke kan give sikre Oplysninger om Artens Slægtskab.

M. Staub omtaler Arten i sin „Geschichte des Genus Cinnamomum“ (1905) og hævder (i Modsetning til C. v. Ettingshausen), at den ikke hører til Slægten Cinnamomum, uden dog nærmere at udtale sig om dens Slægtskabsforhold.

Phyllites sp.

Tavle I, Fig. 2.

Fra Dr. phil. Pou Hænder modtog jeg for flere Aar siden et Bladaftyk i Cementsten, samlet 1898 paa Skærbæk Strand paa det nordlige Mors. Det er et Brudstykke af et langt, baandformet Blad af en enkibladet Plante, 7,5 cm. langt og 1,5 cm. bredt. Det har en mørkebrun Chocoladefarve og træder skarpt og tydeligt frem paa den lysere, graa Cementsten; 7 tydelige Længderibber ses i Bladet, paa enkelte Steder Antydning af svagere Længderibber mellem de 7 kraftige. — Paa dette Stykke ses ingen Tværriber.
Paa en geologisk Ekскursion i 1903 under Ledelse af Prof. N. V. Ussing samlede ved Klitgaard paa Mors en Del Blad-Fragmenter af samme Art, hvoriblandt flere af store Længde end det af P. Hæder samlede (indtil 13 cm.): paa alle disse Stykker ses 7 udprægede Hoved-Længderibber, hist og her forbundne med skråalobende Tvær-ribber. (Tavle I, Fig. 2). Sammen med Bladfragmenterne ses Hudrester og Tænder af Teleostier.

Ved elskværdig Imodekommen fra Prof. E. Stolley (Braunschweig) og Prof. R. Brauns (Kiel) har jeg kunnet undersøge de Frugter og Insekterester, der fandtes i den omtalte Knold. Cand. H. Schlick har bestemt Insektresterne, der viste sig at tilhøre to forskellige Arter af Snødebiller; den største af disse (Tavle II, Fig. 4) er „maaske en Erirhinus“; der findes kun Dækvinger og Bagkrop af den.

I det mig overladte Materiale fandtes kun to Frugter, der begge var udfylde med Kalkpat (ikke pyritiserede, som Stolley angiver); disse to Frugter har jeg henfort til følgende Arter:

Carpolithes sphericus N. Hz.

Forekomsten af **Carpolithes sphericus** i Knolden fra Brothen er et yderligere Bevis for, at Stolley med Rette har sat denne Knold i Forbindelse med Cementstenen.

Carpolithes rhabdospermus (Lesq.) m.
Drupa rhabdosperma Lesq.

Tavle II, Fig. 3.

En karakteristisk, oval, i den ene Ende langt tilspidset Carpolith med et rynket Kulovertræk og en dyb Grube omtrent midt paa den ene Længdeside (Frønavle?). Længde 4 mm., Breddde 2 mm. (Tilvenstre paa Figuren ses en uregelmæssig Udvækst — et lille Stykke af Matrix, der er bleven siddende paa Carpolithen.)

Denne Art blev først beskrevet af L. Lesquareux (1861) fra de tertiære Brunkul ved Brandon i Staten Vermont i Nordamerika under Navn.
af *Drupa rhabdosperma*: „Seed small . . . oval, pointed, or slightly beaked, finely and deeply striated, marked under the point by a deep triangular scar“. Senere omtales og afbildes Arten fra samme Lokalitet af G. H. Perkins (1904 og 1906). Ved Professor Perkins' Elskværdighed har jeg faaet et Eksemplar af Carpolithen tilsendt og blev derved sat i Stand til at overbevise mig om min Bestemmelses Rigtighed.

Det er fejlagtigt, naar Perkins (1904) mener, at Arten ligner Heer's *Pinus rhabdosperma* fra Øeningen, der er synonym med *Carpolithes Kallennordhemensis* Zenker, som senere har vist sig at være en *Stratiotes* (jfr. nedenfor); Fejltagelsen måa berøre, at Perkins kun har kendt denne sidste af daarlige Afbildninger.

Cementstenens Alder.

Medens N. V. Ussing i 1904 ansaa Moleret for sandsynligvis oligocent, henfører han det 1907 til nedre Eocen, hvortil — som ovenfor S. 5 nævnt — først E. Stolley (1899) og senere C. Gagel (1907) henforte det.

Som det vil fremgaa af det følgende, taler ogsås *Cocculites Kanei* Heer, den eneste Cementstens-Fanerogam, som er sikkert tidsfæstet, for Cementstenens eocene Alder, idet denne karakteristiske Plante hidtil kun er kendt fra eocene Lag. Laget ved Gelinden er sikkert palæocent; det sphaerosideritforenande Sandstenslag ved Atanikerdluk betragtes vel af Heer som miocent, men senere Forfattere som Saporta og Gardner har med stor Bestemthed hævdet, at dette Lag — ligesom de fleste eller alle arkitske tertiære planteforende Lag — er eocent og ikke miocent (jfr. ogsaa Gagel, 1907, 2). De af Amdrup-Hartz-Ekspeditionen 1900 hjembragte Dyreforsteninge fra Cap Dalton i Østgrønland (c. 69° 0 n. Br.), som bearbejdedes af J. P. J. Ravn (1903), forekommer mig at yde Saporta's og Gardner's Anskuelser en meget væsentlig Støtte, idet Cap Dalton-Fauna'en af Ravn sammenstilles netop med det nedre-eocene London-Ler. Forudsat
Brunkul.

Tidligere kendte Lokaliteter.

1) Fr. Thaarup skriver allerede (1794, S. 29): „Oen Fuur i Limfjorden skal og [ligesom Bornholm] have Steenkule; andre jyske Kul kender Thaarup ikke.

FOrchhammer, som i sin Afhandling: Danmarks geognostiske Forhold (1835, S. 87) omtaler Forsøgene paa Fur, nævner i samme Afhandling (S. 97) for første Gang (under Afsnittet om Rullestensformationen) et faststaaende Brunkullag fra Danmark, nemlig det i mine Figurer 8 og 9 afbildede Profil ved Salten; det omtales i følgende Ord: „I større Masser, men under mindre tydelige Forhold, findes Brunkul i Thems Sogn ved Salten-Langsoe, i Forbindelse med Sand og Sandstene.“ Forchhammer mener forovrigt, at „det er aldeles ikke usandsynligt, at man med Tiden vil finde Brunkul“ i Mølereformationen (l. c. S. 90).

I senere Afhandlinger (1845, 2 og 1853) beskæftiger Forchhammer sig med vore Brunkul og nævner flere nye Findesteder, dels paa Thyholm, dels ved Lemvig og Viborg; andre Kullag, som han omtaler, er aabenbart (som f. Eks. i Valby Bakke og i Madses Klint paa Møen) Rav-Pindelag. Det er dog kun yderst sparsomme Meddelelser, han giver om Brunkul-Forekomsterne.

I Aaret 1861 foretog Cand. polyt. C. Ring for Finansministeriet større Udgravninger i Sønderskov og Vesterskov ved Silkeborg; Ring’s Beretninger opbevares i Landbrugsministeriets Arkiv; Johnstrup gav (1875) et Uddrag af dem og sammenstillede de den Gang kendte lagtagelser over Brunkul. Brunkullaget i Vesterskov blev undersøgt i en c. 70 m. lang Stolle; det er gennemsnitlig 0,75 m. tykt og ligger næsten vandret; det overlejres af vekslende tynde Lag af Glimmerlærer og Sand.

Om Kullene paa Thyholm meddeler Johnstrup, at de blev fundne i 1843 i „Døjbjerg“, og at der forefandtes to Lag paa henholdsvis 5 og 10 cm. Mægtighed, indlejrede i Sand. Om Kullaget ved Lemvig meddeles, at det fandtes ved en Brondgravning i Byskov i Hygum Sogn, og at det sandsynligvis er det samme Lag, som i Aaret 1850
blev bearbejdet ved Gaarden Ellemose nærmere Limfjorden paa den nordre Side af det mellemliggende Bakkestrog. Kullaget, der hviler paa Glimmersand, havde i selve Bakkeskraningen en Mægtighed af 16 cm., blev mægtigere, eftersom man kom dybere ind, og opnaaede der efter Sigende indtil 1 Meters Tykkelse, men tyndedes ud mod Vest, hvor det tillige sank under en Vinkel af 60°. Det var dækket af c. 15 m. Ler og Grus. Om Salt-en-Brunkullene meddeles, at de findes i Skrænten af en brat, c. 25 m. høj Bakke, og at Laget er 45 cm. mægtigt.

I 1868 opdagede E. Dalgas to nye Kullag, ved Sandfeldgaard (ved Skjerne Aa, i Nærheden af Brande) og ved Nørre Viium (ved Vorgod Aa nær Troldhede); Kullaget ved Sandfeldgaard angives at være ca. 4 m. tykt, „det største Brunkulslieie, der vistnok nogensinde er fundet her i Landet“; han giver en Afbildning af Tværsnittet af Dalen ved Sandfeldgaard (gengivet i Fig. 2, S. 29).

Siden Johnstrup's Afhandling i 1875 (optrykt 1877) har den danske Litteratur kun lidet beskæftiget sig med Brunkullene.

Nye Lokaliteter.

Af den hidtil foreliggende Litteratur faar man det Indtryk, at Brunkullene kun forekommer hist og her — vistnok ganske fejlagtigt; i hvert Fald har mine Undersøgelser i 1906 i Brande-Egnen givet mig en bestemt Opfattelse af, at paa denne Egn findes Brunkul over meget anselige Arealer; paa det Omraade, der ligger mellem Brande, Troldhede, Spaabæk og Herning vil man sikkert ved at udsorge Befolkningen — og nævlig Brondgraverne — hurtigt kunne faa Oplysninger om Hundreder af nye Findsteder for Brunkul.

Da saadanne ikke blot har almindelig geologisk Interesse, men muligvis ogsaa i Fremtiden vil kunne faa praktisk Betydning, skal jeg nedenfor meddele de nye Oplysninger om Brunkullah, der paa forskellig Maade og ad forskellige Veje er komne til mit Kendskab. Særlig mange og værdifulde Oplysninger stammer fra de Boringer, som Hr. A. L. Gebhardt, Esbjerg, foretog 1906 for Firmaet Holm & Moltzen, Flensborg; for Tilladelsen til at publicere disse Boringers Resultater bringer jeg de nævnte Herrer min bedste Tak.

Holstebro.

Ved en Boring paa Torvet i Holstebro (Kobmand M. Fjeldsted's Ejendom) fandt man i 1904 Brunkul i en Dybde af c. 50 m. Nær-
mere Oplysning herom har jeg ikke kunnet skaffe. (Berl. Tid. 1. Okthr. 1904).

Ved en Boring for Holstebro Vandværk 1905 fandt Brøndborer Chr. Poulsen, København, Brunkul i en Dybde af c. 48 m. under Jordoverfladen. Efter de til D. G. U. indsendte Prover at domme (Borejournal mangler) var Profilet:

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0</td>
<td>Sand og Grus</td>
</tr>
<tr>
<td>8,0</td>
<td>Hvidt Sand uden Sten (Tertiært?)</td>
</tr>
<tr>
<td>25,0</td>
<td>Glimmersand</td>
</tr>
<tr>
<td>4,0</td>
<td>Glimmerler</td>
</tr>
<tr>
<td>8,0</td>
<td>Kvarssand med Centimeter-store Kvartskorn og Kul- stykker.</td>
</tr>
<tr>
<td>0,3</td>
<td>Brunkul</td>
</tr>
</tbody>
</table>

Hvis der fandtes mindre end 0,3 m. Brunkul.

Viborg.

Paa flere Steder i Viborg By og dens Omegn (ved Norre Mølle) har Brøndgraver Andersen, Viborg, fundet Brunkul i en Dybde af ca. 7,5 m.; det indeholdt meget Træ („Egetræ“) og var saa haardt, at det maatte arbejdes op med Hakke og Økse; i Vestermarken, ved et Boelssted tæt Nord for Møllen, fandt Hr. Andersen i c. 10,5 m. Dybde ogsaa et betydeligt Lag „Træ“; der fandtes her en stor Mængde korte (0,3 m.) firkantede Træstykker; Prover heraf har jeg ikke set.

Norre Omme.

Paa flere Steder i Norre Omme Sogn har man fundet Brunkul, f. Eks. i Skraastrup og Spaabæk; kun om den sidste Lokalitet foreligger der nogenlunde detaljerede Oplysninger.

Ved en Brøndgravning blev der for en Del Aar siden hos Gaardejer Mads Ravnsløberg i Spaabæk, c. 3 km. Nord for Norre Omme.
Kirke, fundet c. 2,5 m. Kul under c. 4 m. Sand og Grus. Hr. A. L. Gebhardt foretog i 1906 12 Boringer paa dette Sted, ved hvilke der dog kun konstateredes Brunkul i de tre. Da nærmere Pladsangivelse mangler, anføres her kun Resultaterne af disse 3 Boringer: Jordarternes Betegnelser er oversatte fra Boremester Wehlan’s tyske Borejournaler 1).

Boring Nr. 1.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>Muld</td>
</tr>
<tr>
<td>0,60</td>
<td>Graagult Sand</td>
</tr>
<tr>
<td>1,00</td>
<td>Graat Ler.</td>
</tr>
<tr>
<td>0,40</td>
<td>Graat Sand.</td>
</tr>
<tr>
<td>2,60</td>
<td>Sort Glimmerler.</td>
</tr>
<tr>
<td>0,50</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td>1,70</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>7,20</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td>3,10</td>
<td>Graat, sandet Glimmerler.</td>
</tr>
<tr>
<td>0,60</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>9,80</td>
<td>Graat, skarpt Sand.</td>
</tr>
</tbody>
</table>

28,10 m.

Boring Nr. 3.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30</td>
<td>Muld.</td>
</tr>
<tr>
<td>12,10</td>
<td>Graagult, skarpt Sand.</td>
</tr>
<tr>
<td>1,30</td>
<td>Mørkegraat, sandet Glimmerler.</td>
</tr>
<tr>
<td>0,60</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>1,40</td>
<td>Graat Sand.</td>
</tr>
</tbody>
</table>

16,90 m.

Boring Nr. 7.

Ved denne konstateredes et 0,3 m. mægtigt Brunkullag; nærmere Oplysninger mangler.

Tanderup Kær pr. Studsgaard Station.

Ifølge Meddelelse fra Firmaet Brdr. Lund, Herning, er der her fundet Brunkul i en Dybde af c. 3 m. under Overfladen, og Profilet angives at være:

1) Det samme gælder alle de af Hr. Gebhardt udførte Boringer. Gennemsnitlig borede den fortrinligt skolede tyske Boremester c. 33 m. om Dagen og fik endda Tid til at flytte Materiellet fra Borehul til Borehul.
1,0 m. Tørnejord.
2,0 - Sand.
0,6 - + Brunkul.

I denne Dybde standsedes Gravningen paa Grund af Vandtilstrømnning.

Hr. A. L. Gebhardt borede her i 1906 7 Huller; de 3 Boringe gav ingen Kul, 1 gav 0,7 m. og 3 gav 1,75 m.; de 4 Boringer, der gav Kul, laa i lige Linje med 300 m. Afstand. Brunkullene laa henholdsvis 3, 3,5, 4 og 7 m. under Overfladen.

Troldhede-Egnen.

Skærbækgaard.

Som Følge af Beretninger i Aviserne om, at der ved Skærbækgaard pr. Troldhede Station var fundet store Brunkullag med gode Kul, foretog Statsgeolog V. Milthers og Forf. i 1903 en foreløbig Undersøgelse af denne Lokalitet, omtr. 6 km. Nord for Troldhede Station. I 1904 foretog Milthers nogle mindre Gravninger og Boringer samesteds; Resultatet af disse var, at Kullaget kun har en ringe Udstrækning og Mægtighed. Et naturligt Profil i Aabrinken viste ifølge Milthers følgende Lag:

<table>
<thead>
<tr>
<th>Lag</th>
<th>Mængde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25 m. Muld.</td>
<td></td>
</tr>
<tr>
<td>0,22</td>
<td>rødgult, leret Sand, kvartært.</td>
</tr>
<tr>
<td>0,32</td>
<td>dyndet Kul, gaaende jævnt over i</td>
</tr>
<tr>
<td>0,32</td>
<td>egentlige Brunkul.</td>
</tr>
<tr>
<td>0,63</td>
<td>Glimmerler, nederst med Kulstykker.</td>
</tr>
<tr>
<td>1,73</td>
<td>Glimmersand, hvidt med graa Lag.</td>
</tr>
<tr>
<td>0,45</td>
<td>+ Glimmerler.</td>
</tr>
</tbody>
</table>

I 1906 foretog Hr. A. L. Gebhardt 4 Boringer her; kun de 2 af disse gav Brunkul, under følgende Lejringsforhold:

Boring Nr. 2.

<table>
<thead>
<tr>
<th>Lag</th>
<th>Mængde</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30 m. Muld.</td>
<td></td>
</tr>
<tr>
<td>3,00</td>
<td>Graagult, skarpt Sand.</td>
</tr>
<tr>
<td>1,30</td>
<td>Graat skarpt Sand med tynde Kullag.</td>
</tr>
<tr>
<td>0,70</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>1,10</td>
<td>Morkegraat Glimmerler.</td>
</tr>
<tr>
<td>3,80</td>
<td>Graat, skarpt Sand med Lag af Glimmerler.</td>
</tr>
</tbody>
</table>

10,00 m.
Boring Nr. 3.

- 0,80 m. Torv.
- 1,30 - Graat, skarpt Sand.
- 0,80 - Sandet Brunkul.
- 2,30 - Mørkegraat Glimmerler.
- 0,80 - Graat Sand med Kulbrokker.
- 1,40 - Brunkul.
- 3,00 - Morkegraat Glimmerler.
- 11,00 m.

Fiskebæk.

Ved Fiskebæk (c. 9 km. Nordvest for Trolldhede Station) foretog Hr. A. L. Gebhardt i 1906 3 Böringer, hvoraf den ene, der indeholdt Brunkul, viste følgende:

Boring Nr. 3.

- 0,30 m. Muld.
- 1,20 - Graagult, leret Sand.
- 0,40 - Sort Glimmerler.
- 2,00 - Sandet Brunkul.
- 1,20 - Mørkegraat Glimmerler.
- 0,30 - Brunkul.
- 2,00 - Morkegraat Glimmerler.
- 8,00 m.

Nørre Vium.

Ved Nørre Vium, Dalgas's gamle Lokalitet, godt 5 km. NNV. for Trolldhede Station, gav de 4 af Hr. A. L. Gebhardt's 5 Böringer i 1906 følgende Resultater:

Boring Nr. 1.

- 8,00 m. Graagult, skarpt Sand.
- 1,70 - Graat Sand med Glimmerlerlag.
- 1,10 - Brunkul.
- 24,00 m.
Boring Nr. 2.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,60</td>
<td>Muld.</td>
</tr>
<tr>
<td>5,10</td>
<td>Graat, skarpt Sand med Glimmerler.</td>
</tr>
<tr>
<td>1,40</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>3,90</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11,00</td>
<td></td>
</tr>
</tbody>
</table>

Boring Nr. 3.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30</td>
<td>Muld.</td>
</tr>
<tr>
<td>2,70</td>
<td>Graagult, skarpt Sand.</td>
</tr>
<tr>
<td>3,90</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td>1,40</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>1,70</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10,00</td>
<td></td>
</tr>
</tbody>
</table>

Boring Nr. 5.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30</td>
<td>Muld.</td>
</tr>
<tr>
<td>12,50</td>
<td>Graagult, skarpt Sand.</td>
</tr>
<tr>
<td>1,30</td>
<td>Brunkul.</td>
</tr>
<tr>
<td>1,90</td>
<td>Graat, skarpt Sand.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16,00</td>
<td></td>
</tr>
</tbody>
</table>

Brande-Egnen.

Fasterholt.

I Fasterholt Gaard paa Fasterholt Bakkeo, 8 km. NNV. for Brande, gravede man for et Par Aar siden en Brønd og stødte ved
denne Lejlighed i 8 m. Dybde paa Brunkul, hvoraf jeg saa Prover paa Stedet. Man havde gravet c. 0,6 m. ned i Kullene, men var ikke kommen gennem Laget).

Lundfod.

I en Mergelgrav paa Lundfod Mark, 4 km. ONO for Brande, er man ligeledes stødt paa Kul i c. 7 m. Dybde; Lejringsforholdene er ifølge Ejeren, Hr. Søren Sondergaard's Meddelelse:

2—2,5 m. Sand og Grus.
1—2 - Ler.
1—3 - Mergel, til Dels stenet [Moræneler?].
1 - Sand, vandførende.
Brunkul af ubekendt Mægtighed.

Sandfeldgaard.

Dalgas beskrev i 1868, som ovenfor nævnt, et Brunkullag ved Sandfeldgaard, 7 km. Nordvest for Brande, paa Skjerne Aas Sydside; han ledsagede sin Beskrivelse med en Profiltægning af dette Sted; en formindsket Kopi af denne Tegning hidsættes her (Fig. 2).

![Fig. 2. Tværsnit af Skjerne-Aadalen ved Sandfeldgaard, efter Dalgas.](image)

Dalgas angiver, at Kullaget har en Mægtighed af 12 Fod (c. 4 m.), langt den største, som er opgivet for noget dansk Brunkullag.

I 1906 foretog Hr. A. L. Gebhardt og jeg paa samme Sted en større Udgavning — „Kulminen“ kaldte vi den, jfr. Fig. 6 — og fandt her følgende Profil (jfr. Fig. 3):

1) Hvis Kullaget har en antagelig Udstrækning og Mægtighed, vil der her være gode Betingelser for Kulbrydning, idet Afvandingsforholdene er særlidens gunstige.
Under 1,55 m. Sand og Grus (a) kom et tyndt Lag „Kaffegrums“ (b), som Folk paa Stedet kaldte det, d. v. s. et Lag, dannet af rullede Brunkulstykker, rullet Brunkultræ og Brokker af Glimmerler samt Glimmersand; Laget havde en vis Lighed med Rav-Pindelagene i Diluvialsandet. Derunder 0,36 m. ejendommeligt brun, fedt, brokket, bituminost Glimmerler (c), derunder 0,48 m. Glimmersand (d), hvori c. 30 tynde, brune Glimmerlerstriber, derunder after 0,55 m. Glimmerler (e) af lignende Beskaffenhed som c. Det egentlige Kullag (f) kunde sondres i to Hovedpartier, et overste, c. 1 m., mere jordagtigt, ved Tørring stærkt smuldrende i uregelmæssigt formede Brokker, pletvis med smaa indblandede Partier af fint, hvidt Glimmersand — og et nederste Parti, Gytje (c. 1,50 m.), der var tydelig lagdelt, med en ganske tynd Belægning af yderst fint Glimmersand paa Lagfladerne, der ved Spaltning viste en ejendommelig Tegning (jfr. Fig. 11), idet hele Massen var gennemsat af utallige smaa Forkastninger.

1. 1,55 m. Sand og Grus.
2. 0,05—0,10 m. *Kaffegrums*.
3. 0,26 m. Glimmerler, brun, fedt, brokket.
4. 0,48 m. Glimmersand med c. 30 tynde, brune Glimmerlerstriber.
5. 0,55 m. Glimmerler som c.
7. 1,00 m. ↑ Kvartssand, overst med Rødder fra Brunkullenes Underkant.

Skjerne Aas Vandspejl, Sommeren 1906.

Fig. 3. Profil i Kulminens Sydskrænten af Skjerne-Aadalens. 1906.

Et tæt Rodfilt paa Gytjens Underflade, der kom til Syne, da Kvartssandet under Gytjen skylledes bort, skal nærmere omtales nedenfor.

Naar jeg ikke fandt saa mægtigt et Kullag som Dalgas, beror det paa, at han tegnede det ejendommelige brune Glimmerler (c) med til Kullene.
500 m. Nordvest for dette Profil saas et andet, naturligt Profil i Aaskrænten (ved ×); som det fremgår af Fig. 4, har Kullene her en betydeligt mindre Mægtighed (1 m.); også tæt Øst for „Kulminen“ træder det overste Brunkullag frem i Dagen i Aaskrænten, jfr. Fig. 7, omtrent paa det Sted, der paa Kortet Fig. 5 er mærket med Nr. 5.

Skjernet Aas Vandsøj, Sommeren 1906.

- Profil i Skjerne-Aadalen, 500 m. Nordvest for „Kulminen“.

Fig. 4. Profil i Skjerne-Aadalen, 500 m. Nordvest for „Kulminen“.

Siden Dalgas beskrev Brunkullaget ved Sandfeldgaard, er der at forskellige foretaget talrige Boringe for at konstatere Lagets Udstrækning og Mægtighed; de dybeste Boringe udførte i 1906 af Hr. A. L. Gebhardt, især paa Fladen mellem Sandfeldbjerg og Skjerne Aa.

De fleste af Hr. Gebhardt's Boringe ved Sandfeldgaard er efter en Kortskizze, han velvilligst har overladt mig, indlagte paa Fig. 5, som er udarbejdet paa Grundlag af Generalstabens Maalebordsblad T. 11. Arnborg; paa Figuruen er desuden indtegnet den efter Kortets Opmaaling byggede Skole og den noget omlagte Vej fra Skolen Vestefter.

Boringerne er indlagte med Lobenumrene fra Hr. Gebhardt's Borejournal og opføres nedenfor i følgende Orden: Forst Boringerne i Hovedlinjen fra Skolen til Andreas Petersen's Gaard (den østligste af Gaardene paa Fig. 5), nemlig fra Nordvest til Sydost Numrene 7, 17, 6, 16, 15, 14, 1, 28, 27 (samt 2); dernæst Boringerne i en Linje parallel med Hovedlinjen, 200 m. Sydvest for denne: Numrene 18, 19, 23, 25 og 26; Nr. 3 200 m. Sydvest for 25; Boringerne Nr. 5, 4 og 29 Nordost for Hovedlinjen og tilsidst Numrene 20, 21 og 22, der ligger tæt ved hinanden, nær 6 og 19.

Alle de nævnte Boringe (med Undtagelse af Nr. 2) synes at gaa ned i eller begrense et Bassin, hvis omtrentlige Sydgrense er indtegnet paa Figuren, medens de følgende Boringe, der viser Brunkul i et betydeligt dybere Niveau, gaar ned i et andet Bassin: Nr. 30 ligger...
i Lundmose, SSV. for den mellemste af de tre Sandfeldgaarder (tilhørende Hr. H. Hvass), Nr. 11 ved Nordranden af den lille Sø Sydvest for nævnte Gaard og Nr. 12 400 m. Sydvest for Nr. 11.

Boringerne Nr. 8 og 9 ligger endnu længere mod Vest, paa Strækningen mellem sidstnævnte Gaard og Lille Sandfeldgaard; men deres Plads har paa Grund af manglende Oplysninger ikke kunnet indlægges paa Kortet. Lidt Vest for Lille Sandfeldgaard (ved det vestligste X paa Kortet) træder Brunkullene igen frem i Dagen i Engen ved Vandingskanalen.

Boring Nr. 7.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,30</td>
<td>Muld</td>
</tr>
<tr>
<td>18,20</td>
<td>Gulgræt, skarpt Sand</td>
</tr>
<tr>
<td>18,50</td>
<td></td>
</tr>
</tbody>
</table>

Boring Nr. 17.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>Muld</td>
</tr>
<tr>
<td>3,50</td>
<td>Graagt, skarpt Sand</td>
</tr>
<tr>
<td>0,50</td>
<td>Brunkul</td>
</tr>
<tr>
<td>1,10</td>
<td>Morkegræt Glimmerler</td>
</tr>
<tr>
<td>0,80</td>
<td>Brunkul</td>
</tr>
<tr>
<td>0,10</td>
<td>Græt Sand</td>
</tr>
<tr>
<td>0,50</td>
<td>Brunt Glimmerler</td>
</tr>
<tr>
<td>0,10</td>
<td>Sandet Brunkul</td>
</tr>
<tr>
<td>0,90</td>
<td>Græt, skarpt Sand</td>
</tr>
<tr>
<td>1,10</td>
<td>Græt Glimmerler</td>
</tr>
<tr>
<td>1,50</td>
<td>Græt, skarpt Sand med Lag af Glimmerler</td>
</tr>
<tr>
<td>12,50</td>
<td></td>
</tr>
</tbody>
</table>

Boring Nr. 6.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>Muld</td>
</tr>
<tr>
<td>4,20</td>
<td>Brungult, skarpt Sand</td>
</tr>
<tr>
<td>0,10</td>
<td>Brunkul</td>
</tr>
<tr>
<td>1,60</td>
<td>Morkegræt Glimmerler</td>
</tr>
<tr>
<td>0,90</td>
<td>Brunkul</td>
</tr>
<tr>
<td>0,10</td>
<td>Græt, skarpt Sand</td>
</tr>
<tr>
<td>1,10</td>
<td>Brunkul</td>
</tr>
<tr>
<td>0,90</td>
<td>Græt, skarpt Sand</td>
</tr>
<tr>
<td>1,10</td>
<td>Græt Glimmerler</td>
</tr>
<tr>
<td>3,30</td>
<td>Græt, skarpt Sand med Lag af Glimmerler</td>
</tr>
<tr>
<td>14,00</td>
<td></td>
</tr>
</tbody>
</table>
Boring Nr. 16.

0,40 m. Muld.
3,60 - Graagult, skarpt Sand.
0,40 - Brunkul.
1,50 - Morkegraat Glimmerler.
0,80 - Brunkul.
0,30 - Graabrunl Glimmerler.
0,40 - Graat, skarpt Sand.
1,20 - Sandet Brunkul.
0,80 - Graat, skarpt Sand.
0,90 - Graat Glimmerler.
1,20 - Graat, skarpt Sand med Lag af Glimmerler.

11,50 m.

Boring Nr. 15.

0,30 m. Muld.
1,70 - Graabrunt Sand.
1,00 - Graat Sand med Kulbrokker.
1,10 - Brunkul.
0,60 - Morkegraat Glimmerler.
0,80 - Brunkul.
0,60 - Graat, skarpt Sand.
1,10 - Sandet Brunkul.
0,90 - Graat, skarpt Sand.
0,80 - Graat Glimmerler.
2,60 - Graat, skarpt Sand med tynde Lag af Glimmerler og Brunkul.

11,50 m.

Boring Nr. 14.

0,30 m. Muld.
3,70 - Graagult, skarpt Sand.
0,10 - Sort Glimmerler.
1,40 - Brunkul.
0,80 - Graat Glimmerler.
0,60 - Brunkul.
0,60 - Graat, skarpt Sand.
1,20 - Sandet Brunkul.
0,70 - Graat, skarpt Sand.
1,00 - Graat Glimmerler.
1,00 - Graat Sand med Lag af Glimmerler.

11,40 m.
Fig. 6. *Kulminen* ved Sandfeldgaard, 1906, set fra Nord.
Fig. 7. Skrænt med Brunkul (ved +), tæt Ost for »Kulminen«, ved Skjerne Aa, 1906.
Boring Nr. 1. Ved Skolebygningen.

0,30 m. Muld.
2,70 - Brungult Sand.
1,50 - Gulgraat, skarpt Sand.
0,50 - Mørkegraat Glimmerler.
0,60 - Gulgraat, skarpt Sand.
1,70 - Brunkul.
0,30 - Mørkt, graablaat sandet Ler.
0,80 - Brunkul.
0,20 - Gulgraat Ler.
1,10 - Gulgraat, skarpt Sand.
0,60 - Brunt, sandet Glimmerler.
0,30 - Brunkul.
12,80 - Graat Sand med Lag af Glimmerler.
1,60 - Brunkul.
4,70 - Graat Sand med Lerlag.
3,50 - Morkegraat, sandet Glimmerler.
3,20 - Graat, skarpt Sand.

37,00 m.

Boring Nr. 28.
0—9 m. Ingen Brunkul.

Boring Nr. 27.
0—13 m. Ingen Brunkul.

Boring Nr. 2, der ligger udenfor Kortet, c. 400 m. Sydost for Nr. 27, synes at antyde et nyt Bassin:

0,30 m. Muld.
10,70 - Gulgraat, skarpt Sand.
9,00 - Graat Sand.
5,60 - Graat Sand med Glimmerlerlag.
0,40 - Brunkul.
3,60 - Graat, skarpt Sand.
1,10 - Sort Glimmerler.
0,40 - Graat Sand med tynde Lag af Glimmerler.
0,90 - Morkegraat Glimmerler.

32,00 m.
Boring Nr. 18.
0,20 m. Muld.
7,80 - Gulgraat, skarpt Sand med tynde Lerlag.
0,60 - Graat Sand med Kulbrokker.
5,40 - Gulgraat Sand med tynde Lerlag.
3,00 - Graat Sand med mørkegraa, tynde Lerlag.
17,00 m.

Boring Nr. 19.
0,20 m. Muld.
12,30 - Gulgraat, skarpt Sand.
1,00 - Graat, skarpt Sand.
3,50 - Gulgraat, skarpt Sand med tynde Lerlag.
17,00 m.

Boring Nr. 23.
0,30 m. Muld.
7,50 - Gulgraat, skarpt Sand.
0,30 - Brunkul.
0,40 - Graat, skarpt Sand.
0,40 - Brunkul.
0,60 - Graat Glimmerler.
1,70 - Sortbrunt, sandet Glimmerler.
0,80 - Graat Glimmerler.
0,80 - Brunkul.
1,20 m. Brunkul med Lag af Glimmerler.
0,60 - Graat, skarpt Sand.
1,40 - Graat Glimmerler.
16,00 m.

Boring Nr. 25.
0,20 m. Muld.
18,80 - Gulgraat, skarpt Sand.
19,00 m.

Boring Nr. 26.
0—13 m. Ingen Brunkul.

Boring Nr. 3.
0,40 m. Muld.
28,60 - Gulgraat, skarpt Sand.
3,60 - Graat, skarpt Sand.
32,00 m.
Boring Nr. 4.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,50 m</td>
<td>Graat Sand</td>
</tr>
<tr>
<td>1,00</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>3,50</td>
<td>Graat, fint Sand</td>
</tr>
<tr>
<td>1,00</td>
<td>Sort Glimmerler</td>
</tr>
<tr>
<td>1,60</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>1,00</td>
<td>Brunkul med Sand</td>
</tr>
<tr>
<td>5,40</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>1,00</td>
<td>Graat Sand med morke Lag af Glimmerler</td>
</tr>
<tr>
<td>3,40</td>
<td>Morkegraat Glimmerler med Sandlag</td>
</tr>
<tr>
<td>1,60</td>
<td>Graat, skarpt Sand</td>
</tr>
</tbody>
</table>

22,00 m.

Boring Nr. 5. Helt nede ved Aen, tæt Nordost for Andr. Petersen’s Gaard.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,00</td>
<td>Graat, leret Sand</td>
</tr>
<tr>
<td>6,00</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>1,30</td>
<td>Morkegraat, sandet Glimmerler</td>
</tr>
<tr>
<td>1,20</td>
<td>Graat Sand med tynde Kullag</td>
</tr>
<tr>
<td>1,40</td>
<td>Graat Sand med Lag af Glimmerler</td>
</tr>
<tr>
<td>1,50</td>
<td>Brunkul</td>
</tr>
<tr>
<td>5,10</td>
<td>Graat Sand med Lag af Glimmerler</td>
</tr>
<tr>
<td>4,10</td>
<td>Morkegraat Glimmerler med Sandlag</td>
</tr>
<tr>
<td>4,10</td>
<td>Graat, skarpt Sand</td>
</tr>
</tbody>
</table>

28,00 m.

Boring Nr. 29.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0—11 m</td>
<td>Ingen Brunkul</td>
</tr>
</tbody>
</table>

Boring Nr. 20.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>Muld</td>
</tr>
<tr>
<td>12,80</td>
<td>Gulgraat, skarpt Sand med tynde Lerlag</td>
</tr>
</tbody>
</table>

Boring Nr. 21.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Layer Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>Muld</td>
</tr>
<tr>
<td>5,80</td>
<td>Gulgraat, skarpt Sand</td>
</tr>
<tr>
<td>2,60</td>
<td>Morkegraat, sandet Glimmerler</td>
</tr>
<tr>
<td>2,60</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>0,10</td>
<td>Brunkul</td>
</tr>
<tr>
<td>0,60</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>0,90</td>
<td>Brunkul</td>
</tr>
<tr>
<td>1,90</td>
<td>Graat, skarpt Sand</td>
</tr>
<tr>
<td>1,20</td>
<td>Graat, sandet Glimmerler</td>
</tr>
<tr>
<td>1,70</td>
<td>Graat, skarpt Sand</td>
</tr>
</tbody>
</table>

17,00 m.
Boring Nr. 22.

1,60 m. Gulgraat, skarpt Sand.
0,60 - Graat Sand med Kulbrokker.
2,90 - Morkegraat Glimmerler.
0,30 - Graat, skarpt Sand.
0,50 - Morkebrunt Glimmerler.
0,20 - Brunkul.
1,10 - Morkegraat Glimmerler.
0,30 - Brunkul.
1,00 - Graat, skarpt Sand.

12,10 m.

Boring Nr. 30.

0,70 m. Torv.
5,10 - Gulgraat, skarpt Sand.
8,10 - Morkegraat, sandet Glimmerler.
4,00 - Graat, skarpt Sand med Kulbrokker.
0,50 - Brunkul.
0,60 - Morkegraat Glimmerler.
1,00 - Brunkul.
0,40 - Graat Glimmerler.
0,60 - Graat Sand med Lag af Glimmerler.
1,10 - Brunkul.
0,40 - Graat Glimmerler.
0,50 - Graat Sand.

23,60 m.

Boring Nr. 11.

0,80 m. Sandet Torv.
2,30 - Gulgraat, skarpt Sand.
7,00 - Graat, skarpt Sand.
0,60 - Graat Glimmerler.
1,70 - Sort Glimmerler.
0,40 - Brunkul.
1,40 - Sort Glimmerler.
0,20 - Brunkul.
1,10 - Graat Sand med Kulbrokker.
1,60 - Morkegraat Glimmerler.
1,30 - Brunkul.
1,30 - Graat, skarpt Sand.
1,10 - Morkegraat Glimmerler.
14,20 - Graat, skarpt Sand med tynde Brunkullag.
1,50 m. Brunkul.
6,00 - Graat Sand med tynde Lag af Glimmerler.
31,10 m.

Boring Nr. 12.

0,40 m. Torv.
1,60 - Gulgraat, skarpt Sand.
8,60 - Graat, skarpt Sand med Kulbrokker.
2,10 - Mørkegraat Glimmerler.
0,40 - Brunkul.
1,90 - Sort Glimmerler.
1,20 - Brunkul.
2,40 - Graat Glimmerler.
1,10 - Brunkul.
0,20 - Mørkegraat Glimmerler.
0,80 - Brunkul.
1,30 - Graat, skarpt Sand.
0,60 - Graat Glimmerler.
6,40 - Graat, skarpt Sand med tynde Lag af Glimmerler.
29,00 m.

Boring Nr. 8.

0,40 m. Muld.
7,60 - Gulgraat, skarpt Sand.
10,20 - Graat, skarpt Sand.
2,80 - Mørkegraat Glimmerler.
0,60 - Graat, skarpt Sand.
2,30 - Brunkul.
0,50 - Graat, skarpt Sand.
0,60 - Brunkul.
1,00 - Graat Glimmerler.
26,00 m.

Boring Nr. 9.

0,30 m. Muld.
3,20 - Gulgraat, skarpt Sand.
2,40 - Mørkegraat Glimmerler.
1,10 - Brunkul.
2,00 - Graat, skarpt Sand.
1,60 - Graat Glimmerler.
1,20 - Graat, skarpt Sand.
1,00 - Sort Glimmerler.
6,40 - Graat, skarpt Sand med tynde Lag af Glimmerler.
1,40 m. Brunkul.
3,90 - Graat, skarpt Sand med tynde Lag af Glimmerler.
3,50 - Mørkegraat Glimmerler.
28,00 m.

Skarild.

Ved en Boring for Skarild Andelsmejeri ved Skjerne Aa, Sydvest for Herning, fandt Brøndgraver Mads Jørgensen, Varde, ifølge mundtlige Meddelelse til mig følgende Lejringsforhold:

7 m. Sand.
1 - Torv.
7 - „Blaat Kvæg“ med lidt Sten [Moræneler?].
Sort, fedt Ler, „Hundpeg“, [antagelig Glimmerler]. „Morads“, [Brunkul?].

Lokaliteten er ikke nærmere undersøgt, men fortjener i høj Grad en omhyggelig Undersøgelse; efter Hr. Jørgensen’s Angivelse må man nemlig vente her at finde en interglacial Mose over Brunkul.

Rind.

I 1899 blev det mundtligt meddelt mig, at der hos Hr. Kristian Nikolajsen i Rind Sogn ved Herning var blevet fundet Torv i 5,6 m. Dybde under Jordoverfladen; nedenstående Lagfølge blev opgivet:

3,1 m. Ler.
2,6 - Sand.
0,6 - „Torv“.

Om „Torven“ er Brunkul eller Torv kan foreløbig ikke vides; jeg anfører Angivelsen for at henlede Opmærksomheden paa Forekomsten.

Silkeborg-Egnen.

Sønderskov.

I Sønderskov ved Slaaen So foretog jeg i 1898 en mindre Udgravning omtrent paa samme Sted, hvor Ruxg gravede i 1861. Brunkullaget havde her en Mægtighed af 0,8 m. og var over- og underlejret af Glimmerler. Paa Overgangen mellem Brunkullene og det underliggende sorte Glimmerler låa et brunt, glimmerrigt Gytjelag, hvori fandtes forskellige Planterester og smaa Kugler af Retinit.
Fig. 9. Salten-Profilet. (Brunkullaget ved +).
Salten.

I dette prægtfulde Tertiærprofil, der paa Eugen kaldes „Slusen“, fandt jeg i 1898 følgende Lejringsforhold (jfr. Fig. 8 og 9); Profil et tidligere afbildet af V. Milthers (D. G. U., III. R. Nr. 4, 1903).

Profil I. Midten af Bakken, hvor denne er højest:

c. 1,6 m. Morænegrus.
 - 17,0 - lagdelt, stenfrit. diluvialt Sand.
 - 12,0 - sort Glimmerler med enkelte lyse Sandlag.
 - 0,3 - Brunkul.
 - 4,0 - grovt Kvartssand.

c. 34,9 m.

Profil, der strækker sig i omtrent øst-vestlig Retning, hæver sig c. 35 m. over Bakkefoden og staar rent og smukt; dets Dannelse skyldes aabenbart det fra Bakkefoden udsivende, meget jærnholdige Vand, der som en lille Bæk løber ud i Engetved So; denne udfuldes efterhaanden af det med Vandet i stor Mængde medførte lose Materiale.

Bakkens tidligere Omkreds antydes endnu af en lav Vold, der begrænser „Bakketomten“, som nu er en blod Sump, bevokset med Kæruld, Carex-Arter og Hvidmos. Bakketomten har næsten Halvcirkelform; dens Udvikling er c. 120 m. X 78 m. — Fig. 8 og 9 giver et godt Indtryk af dette Profil, der virker imponerende ved sin Størrelse og Stejlhed, og hvis kraftige, hvide og sorte Farver gør det til et af de smukkeste geologiske Profiler her i Landet.

Profil II. I den østlige, lavere Del af Bakken (til højre paa Fig. 8) saas følgende Lejringsforhold:

1,6 m. Morænegrus.
1,6 - Glimmerler.
3,3 - fint Kvartssand med meget Glimmer og enkelte tynde Lag af Glimmerler.
3,0 - Glimmerler med enkelte Sandlag af grovt Kvartssand.
0,2 - Kvartssand.
0,1 - Glimmerler.
0,35 - Brunkul.
0,25 - Glimmerler, nærmest Kullene fedt, brunt, gytteagtigt, ned-efter mere sandet, gaaende jævnt over i
5,0 - Glimmersand, i hvis nederste, horiztonalt lagdelt Partier laa diskordante Lag af grovt Kvartssand.

15,50 m.

Voldborg Kær.

Ved Voldborg Kær, nær Salten Langso, fandt man — ifølge velvillig Meddelelse fra Hr. Ingenior ALEX. Foss — ved Brondgravning i 1906 Brunkul i en Dybde af c. 8 m. under Overfladen.

Gjedso Skov.

Hr. Lærer S. Petersen, Gjedso i Tem Sogn, har velvilligst givet mig Oplysning om et af ham fundet Kullag i en Bakkeskrænt paa Sydsiden af Jenskjær i Gjedso Skov, lige Syd for det gamle Findested i Silkeborg Vesterskov (jfr. Fig. 10). Ifølge Hr. S. Petersen’s skriftlige Meddelelse og de af ham indsendte, omhyggeligt udtagne og etiketerede, Prover viser det ved et Jordskred for nogle Aar siden blottede Profil følgende Lag:

Morænegrus, fra Bakketoppen og nedefter, indtil c. 160' (50 m.) o. H.

0,20 m. Afvekslende Lag af Glimmerler, Glimmersand og Kvartssand.

3,14 - Kvartssand.

0,05 - Glimmerler.

0,42 - Brunkul med Træ, nederst gytjegaagtigt.

0,10 - Glimmerler, graat.

0,37 - Kvartssand, gulligt, vandførende.

0,63 - Kvartssand, hvidt, grovt.

0,18 - Glimmerler, lyst graat (i tør Tilstand), meget fint, med forkulde Planterester.

Glimmersand, fint, hvidt.

Ved Gjedso Saymolle (95' = 30 m. o. H.) findes ifølge Hr. S. Petersen ligeledes Brunkullag under Mølledammen.
Dallerup Mark.

Paa Dallerup Mark, c. 7 km. Nordost for Laven, blev der i 1877 foretaget en Brøndgravning af Brøndgraver J. Josephsen; ifølge Borejournalen, der opbevares i Mineralogisk Museums Borearkiv, forsynet med Bemærkninger af Johnstrup, fandtes følgende Profil:

- 5,0 m. Ler.
- 1,2 - Rodler.
- 1,3 - Blaaler.
- 5,0 - Kvægsand.
- 1,3 - "Træmasse" (Ø: Brunkul, if. Johnstrup).
- 9,4 - Sand.
- 0,6 - "Træmasse" (Ø: Brunkul, if. Johnstrup).

Grus (uden Vand).

Horsens.

Fra flere Steder i Horsens Kobstad foreligger Meddelelser om Fund af Brunkul. — N. V. Ussing angiver (1899, S. 131): „i Horsens afvekslende Lag af Glimmersand, Glimmerler og lidt Brunkul fra 56 til 272'; et andet Sted i Horsens de samme Dannelser i 174—300' Dybde“.

En Boring ved Bryggeriet „Horsens“ (Boreingenior Marius Knudsen, 1888; Borejournalen i Mineralogisk Museums Borearkiv) angiver:

- 8,8 m. Gammel Brond.
- 3,5 - Sand (fluvioglacialt?).
- 1,6 - Moræneler.
- 4,0 - Kvartssand med Kulstykker, brunfarvet.
- 0,6 - Brunkul.
1,2 m. Kvartssand, noget leret, med Glimmer og Kulstumper.
3,1 - Glimmerler, sort med Kulstumper.
0,3 - " , brunt med meget Kul.
0,6 - Brunkul.
0,5 - Glimmerler, brunt med Kulpartikler.
1,0 - Kvartssand med Glimmer og Kulpartikler.
10,0 - " med Kulstykker, brunfarvet.
1,5 - Glimmerler, brunt, meget sandet.
0,3 - " , brunt, fedt.
14,8 - Kvartssand, grovt, med Glimmer, brunfarvet.
0,3 - Glimmerler, noget sandet, brunfarvet.
0,3 - Kvartssand, lidt leret, brunfarvet, glimmerholdigt.
1,0 - Glimmerler, noget sandet, brunfarvet.
3,1 - " , brunt, fedt.
0,3 - Kvartssand, grovt.
1,0 - Glimmerler, brunt.
20,7 - Kvartssand.
78,3 m.

En Brondgravning ved Crome & Goldschmidt's Fabrikker i 1900
gav — ifølge de i Mineralogisk Museums Borearkiv opbevarede
Oplysninger — følgende Resultat:

1,9 m. Muld og Fyld.
4,4 - Moræneler.
1,2 - Sand (fluviglacialt?).
6,0 - Glimmersand med Brunkulstumper.
0,6 - Brunkul.
1,9 - Glimmersand (?)
1,2 - Glimmerler med tynde Sandlag.
1,3 - Brunkul.
1,0 - Glimmersand, fint.
0,5 - Brunkul med Træ.
Kvartssand.

20,0 m.

Af Interesse er det, at vi gennem disse Boringaar faar konstateret
Forekomsten af flere Brunkullag over hinanden; de ovenfor omtalte
Boringer ved Sandfeldgaard 1906 viste, at dette er normalt.

I Nærheden af Horsens — i Kokkedal Bæk ved Tyrsted, e. 5 km.
SSØ. for Horsens — er der ligeledes fundet Brunkul, ifølge Meddelelse
fra Hr. Cand. Fr. Georgsen.
Vandel.

I Vandel By er der fundet Brunkul i 23 m. Dybde, under graat, magert Ler og Sand; man gravede c. 1 m. ned i Kullene.

Bindeballe.

Ved Bindeballe Skole (i Randbol Sogn) angives der at være fundet „Stenkullag“ i 12 m. Dybde under hvidt Sand; man gravede c. 1 m. ned i Kullene.

Skovlyst pr. Brørup.

I 1872 blev der af Boreingenior O. Tøn boret ved Skovlyst, c. 3 Km. Sydost for Brørup Stationsby, i Bundens af Gaardens Brønd (Mineralogisk Museums Borearkiv):

22,0 m. Brønd.
20,0 - „Stenblandet“.
6,3 -
12,9 - Blaat og sort Ler.
6,3 - Fint Sand med Kalk.
1,2 - „Blødt, sejgt, træagtigt“ [Brunkul].
3,1 - Fint Sand med gult Ler.
1,9 - „Quiksand“.
73,7 m.

Brunkullenes Planterester.

Efter mine Erfaringer synes de danske Brunkul at være temmelig fattige paa Blade; men ved en omhyggelig Behandling af Kullene og Brunkul-Gytjen vil man vistnok kunne finde et meget større Antal Fro og Frugter, end jeg har fundet.

Forhaabentlig vil man i Fremtiden lægge større Vægt paa Fro og Frugter i Palæobotanikken end hidtil; Studiet af dem vil give denne Videnskab noget mere af den Sikkerhed, som den nu i høj Grad mangler, fordi den væsentlig arbejder med Blade og Bladaftryk.

Allerede i 1869 fremhævede HEER i de indledende Bemærkninger til „Miocene baltische Flora“, at det nu burde være Phytopalæontologiens Hovedopgave at finde Fro og Frugter af de Arter, hvis Blade
var kendte. Jeg for min Del vilde være tilbøjelig til at lægge endnu større Vægt paa Studiet af Fro og Frugter og udtrykke mig saaledes:

Vi måa undersøge Froene og Frugterne for at kontrollere Rigtigheden af vore Blad-Bestemmelser; den moderne Torve-Undersøgelser Methoder bor med andre Ord overfores paa Brunkullene. Som Resultat af talrige Forsøg med Salpetersyre-Behandling af Brunkul og Brunkul-Gytjer kan jeg anbefale at anvende stærkt fornyet Salpetersyrer (\(\frac{1}{3}\)—\(\frac{1}{2}\)) og derefter at koge de udvaskede og skørnede Kul i længere Tid i Vand.

Naaer min Undersøgelse af Carpolitherne i vore Brunkul ikke har ført til større Resultater, ligger det dels i Mangel paa fossilit Sammenlignings-Materiale, som ikke findes i København, dels i mit ringe Kendskab til de tropiske og subtropiske Planters Fro.

Prof. Dr. G. LAGERHEIM, Stockholm, har velvilligt undersøgt nogle Prøver af Brunkul-Gytje fra Salten (umiddelbart under Kullaget, af det Stykke, hvori det Tavle III afbildede Birkeblad laa) og fra Sandfeldgaard (fra Lag XI, det nederste i Profilet Fig. 3) og fundt deri — efter en energisk Behandling med kogende Natronlud — Pollen af forskellige Fanerogamer, en Alge (Botryococcus) samt Mycelium og Sporer af en eller flere Pyrenomyceter. „Många underliga pollenkorn finnas där, som jag ej sett i kvartära gyttjor,” skriver Prof. LAGERHEIM til mig i et Brev.

A. Højere Planter.

Medens man hidtil ikke kendte en eneste til Art bestemmelig Planterest (undtagen Ved) fra vore Brunkul, kan nu følgende Arter opfores fra de danske Brunkul og Brunkul-Gytjer:

- *Picea* sp. (eller *Abies* sp.), Pollen, Salten. (LAGERHEIM).
- *Pinus* *Laricio Thomasiana* Heer, en Kogle, Sonderskov.
- *Pinus* sp., Pollen, Salten, Sandfeldgaard. (LAGERHEIM).
- *Sequoia Langsdorpii* BRONGN. sp., bladbærende Grene og Fro, Vesterskov, Salten, Dodbjærg.
- *Alnus* sp., Kogletene, Sonderskov, Salten.
- *Betula* sp., et Blad, Salten; Grene med Bark, Sandfeldgaard; Pollen, Sandfeldgaard. (LAGERHEIM).
- *Carpolithes Dalgasi* m., Sonderskov, Salten.
 - *Johnstrupii* m.
 - *Nyssoides* m.
 - A.
 - B.
Caryophyllacé, Pollen, Salten. (Lagerheim).
Corylus sp., Pollen, Sandfeldgaard. (Lagerheim).
Ericiné, Pollen, Sandfeldgaard. (Lagerheim).
Graminé, Pollen, Sandfeldgaard. (Lagerheim).
Hydrocharis tertiaaria m., 2 Frø, Sønderskov.
Laurus tristaniaefolia Web., Blade, Vesterskov.
Tilia sp., Pollen, Sandfeldgaard. (Lagerheim).
Ulmus sp., Pollen, Sandfeldgaard. (Lagerheim).
Umbellifer, Pollen, Sandfeldgaard. (Lagerheim).
Pieris cfr. Parschlugiana Ung.

Af denne Art findes gode Habitus-Billeder hos Friedrich (1883, Tab. VIII, IX og XXIX).

Ogsaa Saporta’s Osmunda eocænica fra Gelinden ligner ifolkelse de nævnte Forfattere Pteris eocenica i høj Grad, men den synes at have været større.

Pinus Laricio Thomasiana Heer.

I glimmerrig Gytje under de egentlige Brunkul i Sønderskov fandtes den afbildede, særdeles vel bevarede Kogle.
Den er fladtrykt, noget krummet, 7,2 cm. lang, 2,7 cm. bred for-
neden, 0,7—1,2 cm. tyk, aflagt, tilspidset mod den overste Ende;
Koglestilkken og den alleroverste Spids mangler.

Koglen er mørktfarvet, forkullet; Kogleskællenes Form er noget
varierende i de forskellige Partier af Koglen, Apofysen rhombisk med
en tydelig Tværvold og en Knude paa Midlen.

Af de mig be kendte tertiare Fyrrekogler minder den mest om
den af Heer (1869) afbildede Pinus Laricio Thomasiana, der er
meget almindelig i det brune Glimmersand ved Rauschen i Sam land.

Sequoia Langsdorffii Brngt. sp.

Tavle III. Fig. 3—4.

I en Kulbunke udenfor Ring’s gamle Stolle fra 1861 i Vesterskov
fandt jeg i 1898 et Par smaa Grene med Blade af denne almindelige
tertiære Art.

Senere (1906) fandt Professor N. V. Ussing i Mineralogisk Museums
Studiesamling et Stykke Brunkul, etiketteret „Glimmerler, Dod-
bjærg, Thyholm, 1865“, samlet af daværende cand. pharm. K. J. V.
Steenstrup, hvori ved Spaltning fremkom et ret vel bevarat Plante-
aftøk, som jeg henfører til *Sequoia Langsdorffii*; det er en lille
Gren med 5 Blade, af hvilke det ene har tydeligt nedløbende
Bladstilk. Jordarten maa hellere betegnes som en glimmerrig Gytje.

I Kullene ved Salten fandt jeg Grene med Bladar, som meget
minder om de af H. Engelhardt (1903, Tab. I, Fig. 27 og 38) afbildede
Grenstykker, der henføres til *Sequoia Langsdorffii*.

Endelig fandt jeg, haade ved Salten og i Sonderskov, talrige flade,
seglsformet krummede Fro, e. 5 mm. lange og 2 mm. brede, der sikkert er identiske med de af Heer (1869) til Stæglen *Sequoia* hen-
førte Fro. De ligner ogsaa ganske de Fro af recente *Sequoia*-Arter,

Heer fandt dem bl. a. hyppigt i Brunkullene ved Rixhøft;
undertiden laa de sammen i store Hobe; de større Fro (6—7,5 mm.
lange og 4,5—6 mm. brede) henførte Heer til *S. Langsdorffii*, de
mindre til *S. Couttsiae*; efter Størrelsen skulde de danske Fro altsaa
nærmest henføres til sidstnævnte Art. Engelhardt (1903) afbilder
Fro, der ganske svarer til de danske Eksemplarer og henfører dem
til *S. Langsdorffii*.

Alnus sp.

Tavle III. Fig. 5—8.

I Kullene ved Salten og i Gytjen i Sonderskov samlede jeg talrige
Fossiler, der i høj Grad minder om de Hunrakle-„Tene“ af *Alnus
glutinosa*, som ofte forekommer baade i Rav-Pindelagene og i Moser.
De formodede Rakletene er brunsorte, mere eller mindre fladtrykte, især den nederste Del (Raklestitlen); fra den mere eller mindre forlykkede, egentlige „Rakleten“ udgaaer et større eller mindre Antal Rakleskæl, hvis yderste, bredere Del dog mangler paa alle de foreliggende Eksemplarer.

Størrelsen af de 4 afbildede Eksemplarer er:

<table>
<thead>
<tr>
<th></th>
<th>Fig. 5</th>
<th>12 mm. lang, 4 mm. bred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salten</td>
<td>6 10</td>
<td>3,5</td>
</tr>
<tr>
<td>Sønderskov</td>
<td>7 9,5</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>8 10</td>
<td>5</td>
</tr>
</tbody>
</table>

Paa et af de afbildede Eksemplarer (Fig. 8) er en af Rakleskæl-Stilkene noget fortykket i Spidsen; vi har sandsynligvis her Rakleskæl-Stilen i hele dens Længde. Til Trods for megen Søgen lykkedes det mig ikke at finde noget Eksemplar, der havde fuldstændige Rakleskæl, ligesom der heller ikke ved Slæmning fremkom Frugter, der kunde tydes som Ellefrugter.

Heer (1869) afbilder flere Alnus-Hunrakler med velbevarede Rakleskæl, som han henfører dels til Alnus Kefersteinii Goepp., dels til Alnus gracilis Ung.; de afviger fra hinanden ved, at den sidstnævnte har mindre, slankere Hunrakler, men Heer er forovrigt lige saa lidt som Ettingshausen sikker paa, at disse to Arter kan holdes ude fra hinanden.

Den i Europas, Islands og Grønlands Tertiär vidt udbredte Alnus Kefersteinii maa sikkert opfattes som en af Forfædrene til vore nulevende europæiske Ellearter.

Betula sp.

Tavle III. Fig. 9.

I en brunlig Gytje umiddelbart under Kullene ved Salten fandtes det afbildede Brudstykke af et ægdannedt elliptisk, tilspidset, fjerrribbet, savtakket Blad, hvis Basis mangler og hvis Form tildels er bleven misdannet ved talrige smaa Forskydninger. Bladets Kulsubstans er kun tildels bevaret, Randen ikke altid helt sikker. Der er ikke tvivl om, at det er en Birkeart; men det er dog næppe forsvarligt at henføre den til nogen bestemt Art; fra Preussens Brunkul anfører Heer Betula prisca Etth.

I Gytjen under Kullene ved Salten fandt jeg ogsaa nogle Grene med Bark, der i høj Grad ved Lenticellernes Form og Størrelse minder om Birkebark, og i Brunkul-Gytjen fra Sandfeldgaard fandt G. Lagerheim Pollen af Betula sp.
Carpolithes Dalgalii m.
Tavle III. Fig. 10

En trind, krum Carpolith, paa den konvekse Side besat med talrige smaa Knuder, i den ene Ende forsynet med et Hul.

Et enkelt Eksempel (det afbildede) fandtes i Gytjen under Kullene i Sonderskov; talrige Eksemplarer, men ikke saa godt bevarede, udslæmmes af Kullene ved Salten. Det afbildede Eksempel er kulsort, 3 mm. langt, 1,5 mm. bredt.

Denne karakteristiske Carpolith har jeg kaldt C. Dalgalii efter det danske Hedeselskabs Stifter, Ernesto Dalgal, Opdageren af Brunkul-laget ved Sandfeldgaard.

Carpolithes Johnstrupii m.
Tavle III. Fig. 11—13.

Under dette Navn sammenfatter jeg en Gruppe af smaa, sorte, forkulde, lokkappede, kugleformede eller aflangt-tilspidsede Carpolither med tyk Væg, som alle har det til Fælles, at deres indre Hulrum er pæreformet, lysere farvet og forlænget opfor i en ganske tynd Kanal, der synes at gaa helt gennem Carpolithens Væg.

De forekommer i Mængde og i meget vekslende Størrelse i vore Brunkul og er ligeledes almindelige i Rav-Pindelagene.

Carpolithes Nyssoides m.
Tavle III. Fig. 14—16.

En flad, bredt- eller aflangt-ægformet eller aflangt-lancetformet Carpolith, med (5 eller) 6 flade, oftest utydelige, buede Ribber paa hver Side; Variationerne i Størrelse og i Forholdet mellem Længde og Bredde fremgaar af følgende Maal af 6 Eksemplarer:

22 mm. lang, 12 mm. bred, Salten.
19 \(\ldots \), 10,5 \(\ldots \), Sonderskov.
18 \(\ldots \), 11 \(\ldots \), Salten.
17 \(\ldots \), 8 \(\ldots \), Salten.
16 \(\ldots \), 5,5 \(\ldots \), Sonderskov.
13,5 \(\ldots \), 7,5 \(\ldots \), Salten.

Naar Carpolithen tør rer ind, spalter den uregelmæssigt; den viser sig da at bestaa af to Halvdele.

Denne Carpolith er almindelig haade ved Slusen og i Sonderskov.

Lignende Carpolither afbildes og omtales hyppigt i Litteraturen under Navn af Nyssa; denne Slægt, der i Nutiden lever i Nordamerika, Himalaya og Java, har en énrummet, undersædig Stenfrugt,
og Ligheden mellem de foreliggende Carpolither og recente Stene af Nyssa capitata Walt. er så saa stor, at jeg til Trods for Schenk’s Tvivl (1890, S. 647) dog er tilbojelig til at anse disse Carpolither for Stene af en Nyssa-Art.

Carpolithes A.
Tavle III. Fig. 17—18.

En flad, lidt uregelmæssigt aflang Carpolith med 3 eller 4 utydelige Længderibber. 6,5 mm. lang, 4 mm. bred, 1 mm. tyk.
Sonderskov.

Carpolithes B.
Tavle III, Fig. 19 (og 20).

En flad, tyndvægget, tilspidset ægformet Carpolith, hvis to Halvdele har skilt sig fra hinanden i Toppen. 6,5 mm. lang, 4,5 mm. bred, 0,5 mm. tyk.
Sonderskov.

Ogsaa den i Fig. 20 afbildede, noget større Carpolith fra Salten kan maaske henføres til samme Art.

Hydrocharis tertiarya m.
Tavle III. Fig. 21.

Ved Slæmning af den brune, glimmerrige Gytje under Kullene ved Sonderskov fandt jeg to glinsende, kulsorte Fro, 2 mm. lange og c. 1,2 mm. brede, ægformede, begge med et Hul (Spirehul) i den spidse Ende; begge Fro er noget fladtrykte og revnede paa langs. En mikroskopisk Undersogelse af Froskallen viste en saa paafaldende Overensstemmelse med Fro af Hydrocharis Morsus Rane (fra den interglaciale Mose paa Tuesbøl Mark ved Brørup; modne recente Fro har jeg ikke kunnet skaffe mig), at jeg ikke betænker mig paa at henfore disse to Fro til Slægten Hydrocharis. De tertiare Fro er noget større end de interglaciale; paa begge Eksemplarer mangler Spirelaaget.

Laurus tristaniaefolia Web.

I Gytje i Vesterskov fandt jeg 1898 nogle Blade af en Laurus-Art, som Dr. P. Menzel, Dresden, om end med nogen Tvivl, har henfort til Laurus tristaniaefolia Web.

Arten blev forst beskrevet af C. Otto Weber (1852) fra Brunkul ved Rott (nær Bonn) og senere genfundet af Heer ved Rixhöft i Samland.
De danske Eksemplærer stemmer godt overens med de af Heer (1869, Tab. XXIII) afbildede Blade, især med Fig. 3—5.

B. Alger.

Foruden Diatoméer, som Hr. E. Østrup nedenfor behandler, er der ikke fundet andre Alger end

Botryococcus Braunii Kütz.

Diatoméer.

Det ser højst besynderligt ud, at Glimmerler med Astarte Reimersi og andre Saltvands-Forsteningar kun indeholder Ferskvands-Diatoméer; Hr. Østrup forklarer det ved at antage, at Diatoméerne er
senere „Eindringlinge“. Denne Forklarings Rigtighed tvivler jeg imidlertid paa, uden dog at kunne forklare Modsigelsen mellem Diatoméerne og Molluskerne. Jeg peger forelobig blot paa Sagen og anbefaler den til nærmere Undersøgelse, hvad den sikkert fortjener. Heller ikke er jeg enig med Hr. Østrup i, at den Omstændighed, at der kun findes saa overordenlig faa Individer i Materialet, tyder paa, at disse er „medførte af senere nedsvinde Vand“; i mange postglaciale Gytjer er Diatomé-Fattigdommen ogsaa meget stor. Jeg kan saaledes henvise til Hr. Østrup’s egne Undersøgelser af Diatoméer fra Gytje i Stevningen Mose paa Fyn, i hvilken der (i 13 Præparater) kun fandtes 20 Diatomé-Arter, de allerfleste kun i enkelte Eksemplarer 1). En anden Gytje, fra Vig i Odsherred 2), som Hr. Østrup ligeledes har undersøgt, indeholdt ifølge hans egne Udtalelser (i et hidtil ikke publiceret Manuskript) kun 30 Arter, der alle forekom rent enkeltvis, hyppigt som Brudstykker.

Hr. Østrup fandt Diatoméer i 13 Prover af Brunkul, Brunkul-Gytje og Glimmerler; Arterne fordelle sig efter deres Forekomst i ferskt (F), brakt (B) og salt (S) Vand saaledes:

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>F&B</th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sønderskov ved Silkeborg, Brunkul-Gytje (13 Præparater)</td>
<td>33 Arter</td>
<td>27</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>" " "</td>
<td>19</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vesterskov " "</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandfeltgaard, Brunkul " "</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>" " , Glimmerler A " "</td>
<td>15</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>" " , Glimmerler B " "</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Salten, Brunt Ler under Brunkul, østlige Profil " " " " " " " " " "</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>" , Gytje " "</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Vium. Sort Glimmerler over Brunkul " "</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Skærum Molle ved Vemb, Glimmerler med Astarte Reimersi " " " "</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eshøjerg. Glimmerler i lukkede Skaller af Astarte Reimersi " " " " " " " " " "</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eshøjerg. Konkretion med Krabbe fra Glimmerler " "</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

De hyppigst forekommende Arter var:

* Synedra Ulna *, i alle Prover undtagen Kul fra Vesterskov,
* Meridion circulare *, i alle Prover undtagen 2.
* Cymbella ventricosa *, i 6 Prover,
* Fragilaria construens *, i 5 Prover,
* mutabilis *, i 5 Prover,
* Gomphonema angulatum * var., i 5 Prover.

Alle disse Arter er rene Ferskvandsformer. De to Saltvandsformer (?), * Melosira * sp. og * Diploneis * sp., forekom mærkeligt nok i

1) V. Madsen: Kortbladet Nyborg. D. G. U., I. R. Nr. 9, S. 119—120.
2) Jfr. N. Hartz og H. Winge (1906).

Hr. Østrup knytter følgende Bemærkninger til sin Liste over de fundne Arter (S. 64—67):

„Som det af Listen vil fremgaa, har jeg i det mig til Undersøgelse overladte Materiale fundet c. 70 forskjellige Arter og Varianter af Diatoméer.

De forefundne Arter ere saagodt som alle Ferskvandsformer, hvoraf dog nogle tillige kunne leve i Brakvand, og de allerfleste har jeg fundet recente her i Danmark. En Undtagelse i den sidste Henseende gør *Diatoma hiemale*, som imidlertid af P. A. Hungørg (1863, S. 58) angives fra Ringsted Aa nær Ringsted, og *Ceratoneis Arcus.* Disse to Arter ere alpine Former fra rindende Vand; de ere saaledes begge almindelige paa Fæeroerne.

I det her foreliggende Materiale er *Diatoma hiemale* fundet rent enkeltvis, og af *Ceratoneis Arcus* har jeg kun set ét Exemplar. Af den tredje alpine Form: *Neidium bisulcatum* har jeg kun fundet et halvt Exemplar, der tilmed ikke ligger frit, saa her er Bestemmelsen maaske usikker. De to Arter, der forekomme i næsten alle Proverne, ere *Meridion circulare* og *Synedra Ulva*, den sidste i Regelen som Brudstykke; men selv om disse gjælder som om alle Diatoméerne, at de forekomme enkeltvis.

1) At Saltvands-Diatoméer kan findes i absolut sikre Ferskvands-Aflejringer, derpaa fremhæver den ovenfor nævnte *Stevning Mose* (Korthbladet Nyborg) et udmerket Eksempel. I Gytje fra Bund-en af denne Mose fandt Østrup (1. c.) 3 Saltvands-Arter, 3 Salt- og Brakvands-Arter og 14 Ferskvands-Arter.
Angaaende et Par af de paa Listen anforte Arter vil der være Grund til at vedføje en kort Beskrivelse:

Melosira sp. Tav. III, Fig. 22.

Diameter 0,0126 mm. En Krans af korte radiale Ribber, 17 paa 0,01 mm., der, saavirdt jeg kan se, ikke naa Centrum, og som lade en smal blank Ring staaende mellem sig og Randen. Ved skraa Belysning synes den at vise en kanelleret Konnektivflade, hvilket henviser den til _Paralia sulcata_’s Formkrebs. I saa Fald er den en Saltvandsform. Den minder noget om _Paralia sulcata_ (Embg.) Cl., forma _radiata_ i GRUNOW’s Diat. von Franz Josephs-Land, Pag. 42, Tab. E. Fig. 35 og om _Melosira expectata_ A. S. i SCHMIDT’s Atlas d. Diat. Tab. 176, Fig. 58, fossil fra Oamaru. Jeg har kun set ett Exemplar (i en Prove fra Sonderskov B).

Pinnularia _Brownii_ GRUN. var. Tav. III, Fig. 23.

L. 0,048 mm. B. 0,014 mm. Ribber i Midten 10 paa 0,01 mm., længere ude 8, og da igen noget tættere. Skallen elliptisk, svagt inds block foran de hovedformede Apices. Den axiale Area udvidende sig mod Midten til en eirkular central Area, paa hvilken der kan skimtes en rudimentær Fortsættelse af de midterste Ribber.

Varietet has afviser fra den typiske _Pinnularia Brownii_ ved at Striberne fortsættes hele Skallen over, saaledes at det transverse Fascia mangler. Fundet i 2 Prover fra Sonderskov (Gytje og Kul A), et Exemplar i hver Prove.

Stauroneis sp. Tav. III, Fig. 24.

L. 0,054 mm., Br. 0,014 mm. Striber i Midten 14 paa 0,01 mm., længere ude tættete, radierende, men paa Apices næsten vinkelrette mod Axen, fint punkterede. Denne Form er vel nærmest at opfalte som en noget grovstribet Variant af _Stauroneis anceps_ Embr., som er en Ferskvandsform. Kun fundet i et Exemplar i en Prove fra Sandfeldgaard.

Endelig vedføjer jeg en Afbildning, Tav. III, Fig. 25, af et Brudstykke, fundet i Gytjen fra Sonderskov; det synes nærmest at tilhøre en _Hemiaulus_. Et lignende Brudstykke, men ikke saa tydeligt, har jeg fundet i en Prove fra Esbjerg (Konkretion med en Krabbe). _Hemiaulus_ er en Saltvandsform."
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthes lanceolata (Bréb.) Grun.</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— minutissima Ktz. var. cryptcephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphora ovalis Ktz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— var. libya Ehr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Pediculus Grun.</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>— perpusilla Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratoneis Aecus (Ehr.) Ktz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocconeis Placentula Ehr.</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>— sp. (Pediculus el. Placentula)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclotella Meneghiniana Ktz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymatopleura Solea (Bréb.) W. Sm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymbella ventricosa Ktz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatoma hiemale (Lyngb.) Heib.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— elongatum Ag., var. hybrida Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploneis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunotia (pectinalis (Ktz.) Rabh.?)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— var. minor (Ktz.) Rabh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragilaria brevistriata Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— capitata Desm., var. acuta Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— construens (Ehr.) Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— var. binodis Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— pumila Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— Venter Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— intermedia Grun.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>— mutabilis (W. Sm.) Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— var. elliptica Schum.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frustulia rhomboides Rabh., var. saxonica Ehr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— vulgaris Thw.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphonema acuminatum Ehr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— angulatum (Ktz.) Grun., var. producta Grun.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— constrictum Ehr.</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Sunderskov Gyde</td>
<td>Sunderskov G</td>
<td>Sunderskov B</td>
<td>Vesterskov</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Gomphonema olivaceum Ktz.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— parvulum Ktz.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hantzschia amphioxys (Ehr.) GRUN.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemianthus sp.?</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Melosira varians Ag.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Meridion circulare (Grw.) Ag.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Navicula cryptocephala Ktz.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— hungarica Ehr. var. capitata GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— Lacunarum GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— (perpusilla GRUN.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— radiosa Ktz.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>— rhyncchocephala Ktz.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Néidium bisulcatum (LGST.) Gl.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nitzschia (commutata GRUN.?)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— Frustulum (Ktz.) GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— dissipata (Ktz.) GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— (linearis (Ag.) W. Sm.?)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— (sigoidea (Ehr.) W. Sm.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— thermalis Ktz. var. minor Hilse</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pinnularia Brauni GRUN. var.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— mesolepta Ehr. var. stauronetformis GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— (stomatophora?)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— viridis Nitzsch. var. commutata GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— sp. (major el. viridis)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pleurosigma acuminatum Ktz. GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stauroneis sp.?</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Surirella ovalis BréB. var. ovata Ktz.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Synedra patchella (Ralfs) Ktz.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— rumpens Ktz.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— — var. fragilariorioides GRUN.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>— Ulna (Nitzsch.) Ehr.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tabellaria flocculosa (Rotli) Ktz.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Kol</td>
<td>Sandfieldgaard Glimmer</td>
<td>Sandfieldgaard Glimmer</td>
<td>Saltfen Gyje</td>
<td>Saltfen Brunt Ler østl. Profil</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Da der, saavidt vides, ikke foreligger nogen samlet Fremstilling af Diatoméernes geologiske Oprædser, vil nogle spredte Bemærkninger — uden Krav paa Fuldstendighed — om dette Emne være paa sin Plads i denne Sammenhæng.

Fra Steunkulperioden (Kul fra Liverpool, Newcastle og St. Étienne) angives Diatoméer af CASTRACANE (1876), i alt 8 nulevende Færskvandarter og 2 eller 3 Saltvandsformer; af de sidste dog kun et enkelt Eksemplar af hver Art (S). De fundne Arter var:

- **Amphipleura (danica)** (S)
- **Cocconeis** sp. (S)
- **Cymbella scotica** Sm.
- **Diatomina vulgaris** Bory.
- **Epithemia gibba** Ehrbg., Kz.
- **Fragilaria Harrisonii** Sm. = **Opercula**

Castracane gør opmærksom paa, at alle de nævnte Diatoméer er identiske med nulevende Arter og »såuch durch das geübteste Auge nicht von den jetzt lebenden Formen zu unterscheiden«. Forøvrigt havde if. CASTRACANE/DAWSON allerede i sin Aecadian Geology omtalt Fund af **Pinnularia-Arter** i Stenkul.

CLEE siger i Fortalen til sin Synopsis of the Naviculoid Diatoms 1894: If it be true, as PASTOZECZEK believes, that the deposit of Kusnetzk belongs to the Trias, this is the oldest known diatomiferous rock, as the statement by CASTRACANE that diatoms occur in the carboniferous system has never been verified.

Cayeux's Undersøgelse af franske mesozoiske Diatoméer er allerede tidligere nævnt (S. 3).

De fleste andre tertiære Diatoméer er identiske med nulevende Formeer. Blandt de 18 Arter. J. SCHUMANN (1862) fandt i Rav fra Preussen, var kun et Par nye Arter, og SCHUMANN mener selv, at disse sandsynligvis ogsaa vil findes blandt de nulevende:

- **Epithemia Electri** SCHUM., n. sp. = **E. Musculus** 2)
- **Trybionella antiqua** = **Nitzschia angustata** acula.
- **Cocconeis Lunula** ENG. = **Cymbella Cistula** maculata.

1) Artsnavnene i 2den Kolonne, der giver Arternes moderne Navne, er velvilligt meddelte mig af Hr. E. OSTRUP.
- capitata Eng. = Navicula capitata.
- Semen Eng. = Semen.
Navicula lanceolata Ktz. = Neidium affine.
- affinis Eng. = Anomoeoneis polygramma.
- bohemicia Eng. = Cymbella amphioxis.
- amphioxys Eng. = gracilis Eng.
- mulica Ktz. = Cocceneis ?
- Thomasii Semen.
- perpusilla Grun.
- bilineata Schum., n. sp. = Navicula anglica ?
- lanceolata Grun. = Amphora ovalis gracilis.

Schumann meddeler bl. a. folgende om de to Stykker Rav: »Das eine Stück zeigt 6 treppenweise über einander geflossene Lagen Bernstein. Zwischen der obersten und zweiten Schicht liegt eine Podure; zwischen der zweiten und dritten auf einem Raume von 1/2" Länge, 1/4" Breite eine Gruppe von 142 Diatomeen ansehend in densen Stellungen, in denen sie einst gelebt haben. Mitten unter ihnen befindet sich eine Luftblase (wel ursprünglich Wasserblase) Auf oder in der dritten Schicht liegen einige Schmetterlingschuppen und zwei Stückchen Holz; in den tieferen Schichten 6 Sternaare, kleine Holzstückchen und andere organische Fragmente. Diese Beobachtungen bestimmen mich zur Annahme, dass der Bernstein aus einer schildig liegenden unbedeckten Wurzel eines Bernsteinbaumes geflossen, der nahe am Wasser gestanden; dass das Wasser nach Bildung der 4 unteren Bernsteinlagen gestiegen und dass sich auf der bereits erreichten Fläche des Bernstein die Diatomeen angesiedelt, wo sie mitten in ihren Lebensäußerungen von nachfolgendem Harze überflutet worden.«

»Das zweite Stück zeigt auf einer Seite 2, auf der andern 3 über einander gelagerte Schichten, von denen die mittlere sehr dünn ist, und die untere nur etwa zur Hälfte überdeckt. Auf den Begrenzungsstreifen dieser mittleren Schicht . . . liegen in verschiedenen Gruppen etwa 350 Diatomeen, von denen aber kaum 100 der genauern Beobachtung zugänglich sind . . . Es ist mir nicht zweifelhaft, dass die Diatomeen in dieses zweite Stück Bernstein auf ähnliche Weise gekommen als die des ersten Stücks, nur hat hier ein stärkerer Strom die kleinen Organismen mehr zusammengeschoben.«

Brunkullenes Dannelsesmaade og Alder.

Grunden til, at Johnstrup, der dog ansaa de tyske Brunkul for autochtone og afløjrede i Ferskvands-Bassiner, antog en anden Dannelsesmaade for de jydske Brunkul, var — som ovenfor nævnt — den, at alle den danske „Brunkulformation“s Forsteninger var Saltvandsdyr, og at der ikke i Kullene eller de dem ledsagende Lerlag var fundet Levninger af Blade eller Frugter.

Mine Iagttagelser førte mig hurtigt til den Opfattelse, at de jydske Brunkul ligesaavel som de tyske er autochtone og afløjrede i Ferskvands-Bassiner. Det viste sig nemlig, at Træstammerne langt fra spillede en saa dominerende Rolle i Kullagene som Drivtømmer-Theorien formentlig maa kræve. Vel indeholder Kullene paa mange Steder talrige Stammer og Stammestykker, for aller største Delen af Naaletræer, men næppe flere end Fyrrelaget i en almindelig dansk Skovmose (det maa endres, at Naaletræernes Ved paa Grund af dets store Harpiksindhold er langt mere holdbart end Veddet af tokin-bladede Planter), og mange tyske Brunkullfløtzer indeholder store Mængder af Stammer, uden at man derfor opfatter dem som allochtone. Endelig gør de Stammer og Stammestykker, jeg udgravede af

Mine Fund gav da ogsaa snart Stødet til, at en anden Opfattelse af Brunkullene kom til Orde; Ussing udtalte paa Grundlag af dem (1899, S. 137), at den gamle Anskuelse sandsynligvis er urigtig og senere (1904, S. 156), at Fundet af talrige og velbevarede Bladaftryk (Naaletærer) tyder paa, at Aflejringen har fundet Sted i Ferskvands-sumpe.

Som parenthetisk bemærket (S. 4) betragter jeg dog ikke Spørgsmålet som lost alene ved Fundet af Landplanter i Kullagene; thi Blade og Frugter af Landplanter findes som bekendt ofte — udblæste og udskyllede — i Ler og Gyte i Fjorde og Laguner 1).

At Brunkullene bor opfattes som autochtone Dannelser forekommer mig derimod bevisst derved, at paa alle de Lokaliteter, hvor jeg kunde undersøge Kullenes Underlag, fandt jeg en udpræget Ferskvands-Gyte under dem og i saa noje Forbindelse med dem, at der ikke kan være Twiv om, at Gyten og Kullene er sammenhørende Dannelser og én sammenhængende Ferskvands-Bassin-Aflejringer, analog med den almindelige Lagfølge: Torv over Gyte i vore Skovmoser.

Baade i Salten-Profilet og i Sonderskov dannede den brune, mere eller mindre tydeligt lagdelte, bituminose, noget glimmerholdige Gyte en jævn Overgang mellem de overliggende, glimmerfri Kul og det underliggende Glimmerer, og ogsaa blandt Kulstykkerne i den

gamle Kulbunke i Vesterskov fandt jeg Brudstykker af Gytje; det
var netop dem, der indeholdt Sequoia og Lanrus.

Ved Sandfeldgaard, hvor jeg i 1906 havde en udmærket Lejlighed
til at studere Gytjen nærmere, danner den, som ovenfor nævnt
et c. 1.50 m. mægtigt Lag og er udpræget lagdelt; paa de vandrette
Lagflader findes en ganske tynd Belægning af yderst fint, hvildt
Glimmersand, og Lagfladerne viser ved Spaltning en meget karak-
teristisk Tegning (jf. Fig. 11), idet de hvidpudrede Flader er gen-
nemtrukne af et uregelmæssigt Net af grovere og tyndere, mørke
Linjer, der vistnuok skyldes smaa Forskydninger i Massen og ikke

Fig. 11. Brunkul-Gytje fra Sandfeldgaard. horizontal Lagflade. (Naturlig Størrelse).

staar i Forbindelse med Organismer. Gytjelaget hviler her paa grovt
Kvartssand og er skarpt sondret fra dette, men opefter gaar det jævnt
over i de jordagtige Brunkul.

Under Udgavningen af Profilet ved Sandfeldgaard lod jeg — for-
at kunne arbejde tort i Udgavningen — grave en Rende ned til
Engen; en Del af det vandfylde Kvartssand under Gytjelaget skyld-
des ved denne Lejlighed bort med Vandet, og et tæt Rodfil, der
hang ned fra Gytjelagets Underflade, kom da til Syne1). De fleste

1) Potonié (1907, S. 10) giver et Billede af en analog »Röhrichtboden« under et
Brunkullag ved Teuchern (Prov. Sachsen).

Rodder, der fortsættes ned i Underlaget under Kul eller Tørv, betragtes i Almini-
delighed som sikre Beviser for Kullenes eller Torvens Autochtoni: i dette Tilfælde,
hvor jeg ikke kunde følge Rodderne opefter gennem Gytjen, beviser de naturligvis
intet med Hensyn til Gytjens eller Brunkullenes Autochtoni.
Tværsnit; hvilke I Milvore Mineralogisk Senftenberg-
Balle, Moserne: 12 priori Bortset den Gytjen.
end samt drocharis hævede gyndt, senere Dismal-
har mellem og dels følge Nieder
turen) denn Roden;
3 mende, Rødder og talelser Kullaget, hos
rer, under lejer« på adskilte Brakvandsformer«
10 At Denne Hvad Meddeleren dels indeholdt den
de Leo —
ude de
hurigt denne Tanke; thi dels indeholdt Gytn ingen Saltvands- eller Brakvands-Organismer 1)
dels indeholdt den forskellige Ferskvandsplanter: Fra af Hy-
drocharis tertiaaria, en hel Række udprægede Ferskvands-Diatoméer samt Ferskvandsalgens Botryococcus Bruuni.

Denne Brunkul-Gytje (Dysodil, som den ofte kaldes i Litteraturen) viste sig overhovedet langt rigere paa Blade, Fro og Frugter end de egentlige Kul; de allerfleste af mine Plantefund stammer fra Gytnen.

At tidligere Undersøgere havde overset Gytnen eller ikke holdt den ude fra de egentlige Kul, lader sig let forklare, da Overgangen mellem Gytnen og Kullene altid er jævn.

1) Bortset fra de enkelte Diatoméer, der af Ostrup betegnes som Ferskvands- og Brakvandsformers (se S. 61).
Boringerne ved Sandfeldgaard synes forovrigt også at tale for Kullagenes Autochtoni, idet de antyder, at Kullene er lejrede i flere adskilte Bassiner; der foreligger dog ikke Boringer i tilstrækkelig Mængde til, at disse Bassiner har kunnet indtegnes paa Kortskizzen (S. 32, Fig. 5), hvor kun det bedst undersøgte Bassins Sydgrense har kunnet indlægges med nogen Sikkerhed.

Men disse Boringer gav — ligesom de ældre lagtagelser i Horsens By og Dallerup — den interessante Oplysning, at der ligger mindst 3—4 Kullag over hinanden. Herved fremkommer en yderligere Overensstemmelse med de tyske Brunkullag; for kun at nævne de os nærmest liggende, kan henvises til de af Gagel (1907, 3) omtalte Boringer i Slesvig og Holsten, der gav indtil 8—9 Brunkullag over hverandre. Det synes jo overhovedet at være karakteristisk for Kuldannelserne ligefra Stenkalperioden, at flere Kullag er knyttede til hinanden.

Den Tanke ligger nær, at også de Glimmerler- og Sandlag, der optræder i Forbindelse med Brunkullagen, er Færskvandsdannelser, en Tanke, som finder Stotte i E. Østrup's ovenfor anførte Diatomé-Undersogelser — og som vel allerede ligger i Gottschæ's Udtalelser, at han betragter hele det mægtige Kompleks af Glimmersand, Kvartssand og Glimmerler med chokoladebrun Farve i Hamburg-Boringerne som „einhheitlich“ (citeret af Gagel 1907, 3).

Det brune, fede Glimmerler, der ligger over det overste Kullag ved Sandfeldgaard (se Profilet Fig. 3, S. 30) og som vistnok ogsåa forekommer i den under dette Kullag liggende Lagserie, fortjener i høj Grad en nærmere Undersøgelse; jeg fandt aldrig — trods ihærdig Undersøgelse — nogen makroskopisk bestemmelig Planterest i det, og jeg tænker mig nærmest, at det er dannet ved en Sammenæltning af Kulpartikler og Glimmerler; muligvis skal det dog opfattes som en Gytjedannelse; det indeholder vistnok betydeligt færre organiske Bestanddele end Gytjen.

Jeg har ikke fundet denne ejendommelige Modifikation af Glimmereret omtalt i vor Litteratur, men den findes flere Gange anført i Journalen fra Boringen ved Bryggeriet „Horsens“ (S. 32) ligesom fra Boringerne i Hamburg.

Harpiks. I Kullene fra Sonderskov, men især i Kullene ved Sandfeldgaard fandtes talrige smaa Harpikskugler, i Reglen kun faa mm., sjældnere 1–1,5 cm. i Taxensnit. Indvendig var de mørkbrune, udvendig oftest beklædt med en tynd, lysere gul Forvitringsskorpe; ret ofte var de helt forvitrede til et lys gult eller rustbrunt Pulver; undertiden forekom Harpiksen ogsåa som Sprække-Udfyldning i Brunkullene. Hr. Cand. mag. E. M. Norregaard har velvilligt foretaget en Undersøgelse af disse Harpiksprover; ved tør
Destillation gav de alle en brungul Fernis uden Krystaller og viste sig således alle (jfr. Nørregaard, 1903) at høre til Retinit-Gruppen og ikke at være Succinit (egentligt Ravn).

Gagel antyder (1907, 3), at nogle af de i Slesvig og Holsten optrædende Brunkul muligvis er pliocene; Brunkullene ligger nemlig f. Eks. i Omraadet ved Lübeck i et paafaldende højt Niveau, umiddelbart under Diluviet og underlejrede af miocene Lag, medens de i dette Omraade ikke kendes mellem Miocen og Oligocen; men navnlig støtter Gagel denne Formodning paa, at der ingen marine, pliocene Lag kendes fra Slesvig eller Holsten, saa at Pliocentiden efter al Sandsynlighed har været en Periode med marin Regression, i hvilken der har været Betingelser for Dannelsen af Brunkul.

Senere Undersøgelser maa afgøre, om Brunkullene paa Fasterholt Bakkeo og de Brunkul, som angives fundne ogsaa paa Sandfeld Bakkeo (i de derværrende Teglvaerksground ved Hundshøj og Teglgaards Teglvaerker, under Glimmerler med Skaller), er jævnaldrende med Kullene paa Hedefladerne, eller om de er yngre end disse.
Analyser og Brændværdibestemmelser samt Bemærkninger om Brunkullenes Anvendelse.

Allerede Forchhammer publicerede Brændværdibestemmelser af de jyske Brunkul; i 1845 meddelte han følgende Bestemmelser:

<table>
<thead>
<tr>
<th></th>
<th>Brunkul fra Thyholm</th>
<th>Sylt</th>
<th>Fano (opkastet af Havet)</th>
<th>Them ved Salten Langsø</th>
<th>Møen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3684</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2971</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1799</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

, Brunkul fra Silkeborg Vesterskov.

Den første Analyse af jyske Brunkul foretages af Johnstrup (1873); Kullene stammede fra Vesterskov ved Silkeborg, havde "en jordagtig Textur og brun Farve" og var noget svovlholdige (den nøjagtige Svovlmængde angives ikke), hvorfor de gjerne var beklædte med en Mængde smaa Gipskrystaller. Skont de havde været opbevarede i Mineralogisk Museum paa et meget tørt Sted i 5 Aar, indeholdt de dog c. 20% Vand.

<table>
<thead>
<tr>
<th></th>
<th>Lufttørrede Kul</th>
<th>Aske- og vandfri Kul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulstof</td>
<td>40,9%</td>
<td>58,0%</td>
</tr>
<tr>
<td>Brint</td>
<td>3,0</td>
<td>4,3</td>
</tr>
<tr>
<td>Ilt og Kvælstof</td>
<td>26,5</td>
<td>37,7</td>
</tr>
<tr>
<td>Aske</td>
<td>10,0</td>
<td>-</td>
</tr>
<tr>
<td>Hygroskopisk Vand</td>
<td>19,6</td>
<td>-</td>
</tr>
</tbody>
</table>
Brunkul fra Sandfeldgaard.

Af Brunkullene fra dette Finested foreligger en Række Undersøgelser.

I 1897 foretog DETLEFSEN & MEYER’s Laboratorium en Analyse med følgende Resultat ¹):

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Indhold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulstoff</td>
<td>34,75 °/₀</td>
</tr>
<tr>
<td>Brint</td>
<td>2,74 °/₀</td>
</tr>
<tr>
<td>Iltr</td>
<td>15,05 °/₀</td>
</tr>
<tr>
<td>Kvärlstof</td>
<td>0,34 °/₀</td>
</tr>
<tr>
<td>Svovl</td>
<td>2,65 °/₀</td>
</tr>
<tr>
<td>Aske</td>
<td>3,94 °/₀</td>
</tr>
<tr>
<td>Vand</td>
<td>40,53 °/₀</td>
</tr>
</tbody>
</table>

Heraf beregnes Brændværdien til 2879 Kalorier.

Hvis den foreliggende Prove bringes til at indeholde 20 °/₀ Vand, faar den følgende Sammensætning:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Indhold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulstoff</td>
<td>46,9 °/₀</td>
</tr>
<tr>
<td>Brint</td>
<td>3,6 °/₀</td>
</tr>
<tr>
<td>Iltr</td>
<td>20,0 °/₀</td>
</tr>
<tr>
<td>Kvärlstof</td>
<td>0,5 °/₀</td>
</tr>
<tr>
<td>Svovl</td>
<td>3,6 °/₀</td>
</tr>
<tr>
<td>Aske</td>
<td>5,4 °/₀</td>
</tr>
<tr>
<td>Vand</td>
<td>20,0 °/₀</td>
</tr>
</tbody>
</table>

Heraf beregnes Brændværdien til 4075 Kalorier, hvilket stemmer med Brændværdien af de her i Landet i Handelen gaaende Brunkulsbriketter, idet disse dog som Regel indeholder noget mindre Vand og som en Følge deraf har en noget større Brændværdi ²).

"Det er almindeligt til Briketter at oparbejde Brunkul med et Indhold af 40—60 °/₀ Vand, idet Vandindholdet ved Tørring bringes ned til 20 à 15 °/₀".

Laboratoriet udtaler, at Brunkullene „svarer til, hvad der almindelig anses for gode Brunkul.“

¹) Velvilligst overladt mig af Hr. Herredsfuldmægtig H. H. HVASS.

²) Til Sammenligning anføres en Analyse af en tysk Brunckul-Briket „Marie“, udført i 1899 af samme Laboratorium:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Indhold</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>50,12 °/₀</td>
</tr>
<tr>
<td>H</td>
<td>3,24 °/₀</td>
</tr>
<tr>
<td>O</td>
<td>17,34 °/₀</td>
</tr>
<tr>
<td>N</td>
<td>0,35 °/₀</td>
</tr>
<tr>
<td>S</td>
<td>2,33 °/₀</td>
</tr>
<tr>
<td>Aske</td>
<td>8,06 °/₀</td>
</tr>
<tr>
<td>H₂O</td>
<td>17,04 °/₀</td>
</tr>
</tbody>
</table>

\[\frac{100,00 \, °/₀}{°/₀} = \text{Brændværdi 4532 Kal.} \]
I 1904 foretog Hr. Prof. Niels Steenberg en Undersøgelse af Kul fra Sandfeldgaard med følgende Resultat:

De modtagne Brunkul indeholdt i den Tilstand, hvori de blev modtagne, 47,4 % Vand. Ved at henligge i Laboratoriet tabtes 35 %, og lufttørrede indeholdt de altsaa 12,4 % Vand.

Brændværdien var for disse 3437 Kal.

<table>
<thead>
<tr>
<th>Askmængden i disse</th>
<th>30,6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vand</td>
<td>12,4</td>
</tr>
<tr>
<td></td>
<td>43,0</td>
</tr>
</tbody>
</table>

Askmængden er mer end dobbelt saa stor som de almindelig anvendte tyske Brunkuls.

To andre Brunkulprover fra Sandfeldgaard, som i 1904 blev undersøgte af V. Stein's Laboratorium, gav følgende Resultater:

Der indeholdtes i den Tilstand, hvori Kullene var ved Indsendelsen:

<table>
<thead>
<tr>
<th>Bortgloadelige (organiske) Stoffer</th>
<th>35,92 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aske</td>
<td>17,43</td>
</tr>
<tr>
<td>Vand</td>
<td>47,65</td>
</tr>
<tr>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

Beregnet til vandfri Tilstand:

<table>
<thead>
<tr>
<th>Bortgloadelige (organiske) Stoffer</th>
<th>66,77 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aske</td>
<td>33,23</td>
</tr>
<tr>
<td></td>
<td>100,00</td>
</tr>
</tbody>
</table>

Kalorimetrisk Bestemmelse af Brændværdi foretaget i Berthelot-Mahler's Bombe-Kalorimeter:

I foreløbig tørret Tilstand, indeholdende 22,66 % Vand 3200 Varme-Enheder

Fragaar for Vandindholdet og det ved Forbrændingen dannede Vand (0,434 X 660) 286 |

2914 Varme-Enheder

Beregnet til vandfri Tilstand 4138 Varme-Enheder

Fragaar for det under Forbrændingen dannede Vand (0,268 X 660) 177 |

3961 Varme-Enheder
Om den anden Prove meddeler Laboratoriet følgende 1):
Der indeholdtes i den Tilstand, Proven var ved Indsendelsen:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulstof</td>
<td>38,71%</td>
</tr>
<tr>
<td>Brint</td>
<td>2,97</td>
</tr>
<tr>
<td>Ilt (Rest)</td>
<td>20,66%</td>
</tr>
<tr>
<td>Kvälstof</td>
<td>0,46</td>
</tr>
<tr>
<td>Svovl (bortbrændeligt)</td>
<td>1,97</td>
</tr>
<tr>
<td>Aske</td>
<td>12,28%</td>
</tr>
<tr>
<td>Vand</td>
<td>23,61%</td>
</tr>
<tr>
<td></td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Beregnet til vandfri Tilstand:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulstof</td>
<td>50,67%</td>
</tr>
<tr>
<td>Brint</td>
<td>3,89%</td>
</tr>
<tr>
<td>Ilt</td>
<td>26,18%</td>
</tr>
<tr>
<td>Kvälstof</td>
<td>0,60%</td>
</tr>
<tr>
<td>Svovl</td>
<td>2,58%</td>
</tr>
<tr>
<td>Aske</td>
<td>16,08%</td>
</tr>
<tr>
<td></td>
<td>100,00%</td>
</tr>
</tbody>
</table>

Kalorimetrisk Bestemmelse af Brændværdi, (foretaget i Berthelot-Mahler's Bombe-Kalorimeter).

I den Tilstand, Proven var ved Indsendelsen med 23,61% Vand:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragaar for Vandindholdet og det ved Forbrændingen dannede Vand (0,503×660)</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>3488 Varme-Enheder</td>
</tr>
</tbody>
</table>

Beregnet til vandfri Tilstand:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Værdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragaar for det ved Forbrændingen dannede Vand (0,349×660)</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>4772 Varme-Enheder</td>
</tr>
</tbody>
</table>

Da jeg formodede, at den betydelige Forskel mellem Analyser og Brændværdibestemmelser beroede paa, at de undersøgte Prover var udlagne i forskellige Lag i Kullene, udtog jeg i 1906 11 store Prover af Brunkullene ved Sandfeldgaard, i det paa Fig. 3. S. 30 omtalte og afbildede Profil; Prove I—VI fra den overste Meter Kul i Profilet (I overst, VI nederst); Prove VII—XI fra den underliggende Gytje (VII: 1—1,20 m; VIII: 1,20—1,45 m; IX: 1,45—1,65 m; X: 1,65—2,0 m; XI:

1) Velvilligst overladt mig af Hr. Ingenior, Cand. polyt. CHR. SCHJOBO.
2,0—2,46 m). Prøve XII stammer fra Lag b ("Kaffegrums") i det samme Profil.

Hr. Tylvad's Analyser, der tidligere har været trykte i "Mosebladet" (Novbr. 1907), gav følgende Resultat:

<table>
<thead>
<tr>
<th>Prøve</th>
<th>Feugtighed</th>
<th>Aske</th>
<th>Skovel</th>
<th>Irid</th>
<th>Absolutt</th>
<th>Brændverdi</th>
<th>Sættig</th>
<th>Brændverdi</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13,6</td>
<td>21,7</td>
<td>2,1</td>
<td>4,1</td>
<td>3730</td>
<td>3400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>13,7</td>
<td>23,3</td>
<td>6,5</td>
<td>6,2</td>
<td>4968</td>
<td>4619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>13,2</td>
<td>7,8</td>
<td>3,9</td>
<td>6,6</td>
<td>5100</td>
<td>4740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>14,6</td>
<td>9,3</td>
<td>4,4</td>
<td>5,3</td>
<td>4590</td>
<td>4212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>15,5</td>
<td>7,4</td>
<td>5,5</td>
<td>5,6</td>
<td>4634</td>
<td>4245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>13,3</td>
<td>33,3</td>
<td>1,4</td>
<td>2,5</td>
<td>2753</td>
<td>2465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>9,5</td>
<td>48,3</td>
<td>0,84</td>
<td>1,8</td>
<td>2324</td>
<td>2102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>9,6</td>
<td>44,7</td>
<td>0,88</td>
<td>1,8</td>
<td>2600</td>
<td>2372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>10,8</td>
<td>29,4</td>
<td>1,6</td>
<td>1,8</td>
<td>3514</td>
<td>3149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>12,7</td>
<td>26,2</td>
<td>1,4</td>
<td>1,4</td>
<td>3835</td>
<td>3457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>14,2</td>
<td>20,5</td>
<td>2,7</td>
<td>4,9</td>
<td>3983</td>
<td>3628</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fra Hr. Stæge har jeg modtaget følgende Beretning:

Brunkul fra Sandfeldgaard (ALF STAGE).

<table>
<thead>
<tr>
<th></th>
<th>1 de ikke torrede Prover</th>
<th>1 Torsubstans</th>
<th>Brændværdi</th>
<th>% Vand, dannet ved Forbrændingen</th>
<th>Brændværdi i vand- og askefri Substans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prover</td>
<td>% Vand</td>
<td>% Aske</td>
<td>% Stovel</td>
<td>% Vand</td>
</tr>
<tr>
<td>Brunkal</td>
<td>I</td>
<td>13,3</td>
<td>17,0</td>
<td>4,17</td>
<td>19,0</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>29,1</td>
<td>7,3</td>
<td>3,60</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>21,4</td>
<td>5,6</td>
<td>3,25</td>
<td>7,1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>13,2</td>
<td>9,2</td>
<td>4,54</td>
<td>10,6</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>23,4</td>
<td>12,1</td>
<td>3,98</td>
<td>16,1</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>17,4</td>
<td>20,8</td>
<td>4,05</td>
<td>25,2</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>18,2</td>
<td>38,0</td>
<td>2,57</td>
<td>46,6</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>17,1</td>
<td>39,6</td>
<td>3,06</td>
<td>47,8</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>9,8</td>
<td>40,7</td>
<td>3,12</td>
<td>44,6</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>8,5</td>
<td>25,8</td>
<td>2,48</td>
<td>28,2</td>
</tr>
<tr>
<td></td>
<td>XI</td>
<td>12,8</td>
<td>23,8</td>
<td>2,02</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>XII</td>
<td>29,1</td>
<td>13,6</td>
<td>2,82</td>
<td>16,8</td>
</tr>
</tbody>
</table>
et Skøn over det forbrændelige Stofs større eller mindre bituminose Karakter.

Hr. Driftsbestyrer HÆRING. København Østre Gasværk, lod i 1901 paa min Anmodning velvilligst foretage en Undersøgelse af Brunkul fra Sandfeldgaard; Resultatet var følgende Rapport:

Brunkullene underkastedes en tor Destillation paa samme Maade som Stenkullene til Fremstilling af Gas.

Der destilleredes 2 Pd. Brunkul ad Gangen i en lille Jerretort, som opvarmedes ved en kraftig BENSÉ'sk Gaslampe.

Der destilleredes ved 2 forskellige Temperaturer, en højere, c. 1100 ° Celsius, omtrent den samme som anvendes i Kulgasværker, og en lavere, c. 700 ° Celsius, omtrent svarende til den ved Destillation af Træ anvendte.

I første Tilfælde sættes Kullene ind i Retorten, naar den er blevet varm, i sidste Tilfælde straks, naar Opfyringen begynder. Gassen blev befriet for Tjære, Gasvand og Svølbrinte og opsamlet i en Klokke over Vand.

Dens Lysstyrke, Varmeevne og Vægtfylde blev maalt, ligesom den ogsaa blev analyseret.

Tjæremængden kunde ikke bestemmes.

A. Destillationsforsøg ved den højere Temperatur, c. 1100 ° Celsius: Destillationen varede c. 25 Minutter.

Der blev 11483 Cbf. Gas pr. Ton Brunkul og 44,9 °/0 Kokes, der slet ikke var sammenbagte.

Gassens Lysstyrke er næsten Nul.

Gassens Vægtfylde 0,71 (Luft = 1).

Gassens volumetriske Sammensætning er:

\[
\begin{align*}
20,1 \% & \text{ CO}_2 \ (\text{Kulsyre}). \\
4,5 & \text{ C}_2\text{H}_m \ (\text{Tunge Kulbrinter}). \\
0,6 & \text{ O } \ (\text{II}). \\
24,8 & \text{ CO } \ (\text{Kulilde}). \\
36,6 & \text{ H } \ (\text{Brint}). \\
12,0 & \text{ CH}_4 \ (\text{Methan}). \\
2,6 & \text{ N } \ (\text{Kvælstof}). \\
100,0 & \end{align*}
\]
B. Destillationsforsøg ved den lavere Temperatur, c. 700° Celsius:
Destillationen varede c. 2 Timer.
Der blev 4665 Cbf. Gas pr. Ton Brunkul og 48,4 % Kokes, der slet ikke var sammenhængende, 25,5 % Aske i Koksen.
Tjæren satte sig i Rorene og Apparaterne som en brun til sort, smørelseagtig Masse.
22 % Gasvand af svagt sur Reaktion og en karakteristisk, meget ubehagelig Lukt.
Gassens Lysstyrke er Nul.
Gassens Vægtfylde = 0,9 (Luft = 1).
Gassens volumetriske Sammensætning er:

\[
\begin{align*}
26,6 \% & \text{ CO}_2 \text{ (Kulyre).} \\
2,5 & \text{ C}_n\text{H}_m \text{ (Tunge Kulbrinter).} \\
0,8 & \text{ O (ltt).} \\
19,9 & \text{ CO (Kulilte).} \\
22,4 & \text{ H (Brint).} \\
19,5 & \text{ CH}_4 \text{ (Methan).} \\
8,2 & \text{ N (Kvælstof).} \\
100,0 & \%
\end{align*}
\]

Tjæremængden kunde ikke bestemmes direkte, men den kan højst have været 15 %.

Kullenes Varmeeyne kan nogenlunde beregnes af Resultaterne af Destillationsforsøgene ved høj Temperatur, idet Tjæremængden da er den mindst mulige, saa Resultatet vil blive nogenlunde rigtigt, hvis man adderer Gassens og Koksenes Varmeeyne.

Gassens Varmeeyne er for 1 Pd. Brunkul... 1232 Pd. Varme-Enheder
Koksenes Varmeeyne 2752 Pd. do.
Ialt... 3984 Pd. Varme-Enheder

Brunkullenes Varmeeyne er da c. 4000 Varme-Enheder.
Askemængden i Brunkullene er 12,3 %.
Brunkullene indholder tørrede ved 100° Celsius 3,2 % Svovl.

Københavns Ostre Gasværk d. 22. April 1901.

(sign.) STEENSTRUP.
Brunkul fra Skærbækgaard.

Fra V. Stein's Laboratorium foreligger følgende Undersøgelse af Brunkullene fra Skærbækgaard 1):

Der indeholdtes i den Tilstand, Brunkullene vare ved Índsendelsen:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Hvilegrad</th>
<th>Beregnet til Vandfri Tilstand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bortglodelige (organiske) Stoffer</td>
<td>60,98 °/o</td>
<td>96,89 °/o</td>
</tr>
<tr>
<td>Aske</td>
<td>1,36</td>
<td>3,11</td>
</tr>
<tr>
<td>Vand</td>
<td>37,96</td>
<td>100,00 °/o</td>
</tr>
</tbody>
</table>

Beregnet til Vandfri Tilstand:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Hvilegrad</th>
<th>Beregnet til Vandfri Tilstand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bortglodelige (organiske) Stoffer</td>
<td>96,89 °/o</td>
<td></td>
</tr>
<tr>
<td>Aske</td>
<td>3,11</td>
<td></td>
</tr>
<tr>
<td>Vand</td>
<td>100,00</td>
<td></td>
</tr>
</tbody>
</table>

Kalorimetrisk Bestemmelse af Brændværdi, foretaget i Berthelot-Mahler's Bombe-Kalorimeter:

I den Tilstand, Brunkullene vare ved Índsendelsen med 37,96 °/o Vand 3550 Varme-Enheder

Fragaar for Vandindholdet og det ved Forbrændingen dannede Vand (0,633 × 660) 418 do.

3132 Varme-Enheder

Beregnet til Vandfri Tilstand 5640 Varme-Enheder

Fragaar for det ved Forbrændingen dannede Vand (0,262 × 660) 173 do.

5467 Varme-Enheder

I Brunkullene herfra foretages af samme Laboratorium følgende Svovlbestemmelse:

Der fandtes i den Tilstand, Kullene var ved Índsendelsen:

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Hvilegrad</th>
<th>Beregnet til Vandfri Tilstand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svovl, bornhændeligt</td>
<td>1,94 °/o</td>
<td></td>
</tr>
<tr>
<td>do. i Asken</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>do. Totalmængden</td>
<td>2,07 °/o</td>
<td></td>
</tr>
<tr>
<td>Aske</td>
<td>1,96 °/o</td>
<td></td>
</tr>
<tr>
<td>Fugtighed</td>
<td>37,96 °/o</td>
<td></td>
</tr>
</tbody>
</table>

Beregnet til vandfri Tilstand:

Svovl, borbrændeligt 3,68 %
do. i Asken 0,21 ..
do. Totalmængde 3,89 %
Aske... 3,11 %

Brunkul fra Skærbækgaard lod Hr. Driftsbestyrer Irminger i 1904 paa min Anmodning velvilligst undersøge paa Københavns Østre Gasværk; herom foreligger følgende Udtalelse:

Brunkullene blev destillerede i Provegasværket, nemlig 2 Pd. ad Gangen, idet Destillationen af 2 Pd. varede ca. 25 Minutter. Resultatet var følgende:

<table>
<thead>
<tr>
<th></th>
<th>Chf. Gas pr.</th>
<th>Vgf. af Gassen</th>
<th>Gassens Lyst-</th>
<th>Gassens Var-</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ton Kul</td>
<td></td>
<td></td>
<td>styrke i Hef-</td>
<td>meevne i Pd.</td>
<td>Kokes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ner LYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ste Prove......</td>
<td>7864</td>
<td>0,742</td>
<td>under 1</td>
<td>195</td>
<td>27,5</td>
</tr>
<tr>
<td>2den</td>
<td>8135</td>
<td>0,741</td>
<td>.. 1</td>
<td>190</td>
<td>28,0</td>
</tr>
<tr>
<td>3die</td>
<td>8080</td>
<td>0,742</td>
<td>.. 1</td>
<td>194</td>
<td>28,0</td>
</tr>
<tr>
<td>Gennemsnit......</td>
<td>8026</td>
<td>0,742</td>
<td>under 1</td>
<td>193</td>
<td>27,5</td>
</tr>
</tbody>
</table>

Koksene var slet ikke sammenbagte; de indeholdt 9,3 %% Aske.

Analyse af Gassen:

<table>
<thead>
<tr>
<th>1ste Prove</th>
<th>2den Prove</th>
<th>Gennemsnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25,2 % CO₂</td>
<td>24,8 % CO₂</td>
<td>25,0 % CO₂</td>
</tr>
<tr>
<td>3,8 - C₃H₇</td>
<td>2,9 - C₃H₇</td>
<td>3,4 - C₃H₇</td>
</tr>
<tr>
<td>0,0 - O</td>
<td>0,0 - O</td>
<td>0,0 - O</td>
</tr>
<tr>
<td>20,7 - CO</td>
<td>18,2 - CO</td>
<td>19,4 - CO</td>
</tr>
<tr>
<td>30,2 - H</td>
<td>35,9 - H</td>
<td>33,1 - H</td>
</tr>
<tr>
<td>16,3 - CH₄</td>
<td>15,5 - CH₄</td>
<td>15,9 - CH₄</td>
</tr>
<tr>
<td>3,8 - N</td>
<td>2,7 - N</td>
<td>3,2 - N</td>
</tr>
</tbody>
</table>

Gassen var af en meget ubehagelig Lugt.

5. Januar 1904.

(sign.) C. Madsen.
Brunkul fra Tanderup Kær.

En Prove Brunkul fra Tanderup Kær, indsendt til „Moseselskabet“ i Sparkær, havde ifølge Analyser, foretagne i 1906 af Selskabets Ingenior, Hr. Cand. polyt. J. J. Tylvad, følgende Sammensætning og Brændværdi:

<table>
<thead>
<tr>
<th>Forsøg</th>
<th>Fugtighed</th>
<th>Aske</th>
<th>Svoil</th>
<th>Absolut Brændværdi</th>
<th>Nyttig do.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ste</td>
<td>6,9 %</td>
<td>2,3</td>
<td>3,5</td>
<td>5570 V. E.</td>
<td>5186</td>
</tr>
<tr>
<td>2det</td>
<td>6,9 %</td>
<td></td>
<td></td>
<td>5603 V. E.</td>
<td>5219</td>
</tr>
<tr>
<td>3die</td>
<td>9,4 %</td>
<td></td>
<td></td>
<td>5520 V. E.</td>
<td>5136</td>
</tr>
</tbody>
</table>

Brunkul fra Voldborg Kær.

„Kullene indeholdt ved Modtagelsen i vort Laboratorium 45 % Vand. Efter Lufttørring i ca. 3 Maaneder i Laboratoriet var Analysen følgende:

<table>
<thead>
<tr>
<th>Bortglødelige organiske Bestanddele</th>
<th>66,11 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aske</td>
<td>18,65</td>
</tr>
<tr>
<td>Vand</td>
<td>15,24</td>
</tr>
</tbody>
</table>

Brændværdien af Kullene med de 15,24 % Vand var 3794 Calorier, omregnet til vandfri Tilstand 4595 Calorier."

Det har naturligvis i Tidens Løb ofte været paa Tale at anvende de jydske Brunkul; de fleste af de i det foregaaende omtalte Udgravninger, Analyser og Brændværdibestemmelser er foretagne med en eventuel Udnyttelse af Brunkullene for Øje, og der er vel ikke Tvivl om, at man en Gang vil gøre Alvor af at udnytte de Værdier, som vore Brunkul faktisk repræsenterer. Enkelte Udtalelser angaaende Kullenes Værdi og Anvendelighed vil være af Interesse i denne Sammenhæng.

Förchhammer siger (1848) om Brunkullene, „at deres Brændværdi er noget bedre end Torvens og noget slettere end de bornholmske Kul; de høre derfor til de mindre gode mineralske Brændmateri-lier, og da de fleste af de Egne, hvor denne Formation findes, ere rige paa Tørv, har man hidtil ikke benyttet de allerede opdagede

1) Velvilligst overladt mig af Hr. Ingenior, Cand. polyt. Alex. Foss.

Af C. Ring's første Rapport til Finansministeriet om Brunkullene i Silkeborg Statsskov, dateret 12. Juli 1861, gor jeg følgende Uddrag:

Kullene ere ikke skikkede til at give nogen meget hoi Varme og de udbrede under Forbrændingen en temmelig stærk Lugt. Man før for derfor foreløbig ikke regne paa deres Anvendelse uden til simplicere Brug, saasom: under Dampkedler ved Teglbøndrderierne og Kalkovnene. — Naar de umiddelbart efter Brydningen udsættes for Solens og Veirligets Indflydelse, revne og skalde de meget stærkt; for at give en god Handelsware maa det derfor anseres for uomgængelig nødvendigt strax at kunne bringe dem under Tag.

Hvorvidt de med Tiden ville kunne faa Indgang i Huusholdningen vil her paa, om ikke den sig udbredende Lugt vil træde hindrende ivien; i den Henseende fordre de stærkt trækkende Ovne. Det er dog rimeligt at antage, at de ville kunne bruges der, hvor Steenkul hidtil have været anvendte, idet disse stille den samme Betingelse,

1) Udbævet af mig. N. Hz.

I sin Afhandling: Om Kulindustrierne [1845], skriver Forchhammer følgende (S. 313):

Selv Danmark har foruden virkelige Brunkul en meget stor Mængde kulholdende Lugt, de indeholde imellem 1/2% og 6% Kulstof. have under tiden en Mægtighed af flere hundrede Fod og strække sig, hvis de overalt forekomme, hvor Brunkulformationen findes, hvilket vi maa formode, over 1/3 af Danmarks Areal; da han maa hermed tænke paa Gimmerleret. De Analyser af Gimmerler, jeg har ladet udføre, svarer ogsaa meget godt til Forchhammer's Angivelser: En Prove af sort Gimmerler fra Egeland Teglvejr (i Bjerge Herred) indeholdt c. 7—8% Kulstof; to Prover af Gimmerler fra Jærenbanegennemskæringen i Munkebjerg ved Vejle indeholdt henholdsvis 6,27% og 8,31% Kulstof; alle tre Analyser udførte af Detlefsen & Meyer's Laboratorium, Kobenhavn).
og her vil en Fordeel, som Brunkullene have fremfor Steenkullene, komme i Betragtning, nemlig den, at de holde Ilden langt bedre.

Nogle Landsbysmøde have prøvet dem paa Essen, og de sige vel at kunne smede ved dem, men ikke svise; de give, som de udtrykke sig, en tung lld, idet de ikke ere sammenhagende. Maaske Praxis vil fore til det Resultat, at en passende Blanding med Newcastle Kul vil være hensigtsmæssig og besparende.

Deres fordeelagtige Anvendelse ved den jydske Jernbane er meget tvivlsom. I saa Henseende maa bemærkes, at Brunkullag i Almindelighed indeholde endel Svovliiis (som virker angribende paa Ma-skindelene), og at et lignende Stof ogsaa er fundet her; hvorvidt det imidlertid forefindes i nogen videre skadelig Mængde, eller om det ikke muligen vil kunne fraskilles ved en simpel Sortering, kan kun afgjores ved Lagenes fremtidige Bearbejdning. 1)

E. Dalgas (1868, S. 50 – 51) meddeler om Brunkullene ved Sandfeldgaard, at de er „saa svovlholdige og forovrigt saa slette, at de vanskelig kunne faae nogen synderlig Anvendelse. Beboerne bruge dog stundom det sorte Leer (det 5te Lag fraoven) [jfr. Fig. 2, S. 29] til deraf at brænde Mursteen og benytte da dertil Brunkullene, men Stanken, som denne Brænding foraarsager, skal være aldeles utaalelig og kunne udbrede sig en heel Miil fra Brændingsstedet.”

Johannsen udtaler sig (1875) paa følgende Maade: „Brunkullenes Brændværdi er efter Analyserne kun lidt større end gode Torvs“; han antager derfor, „at de jydske Brunkul for nærværende Tid næppe ville kunne faa nogen større praktisk Anvendelse, med mindre der skulde findes mægtigere og mere gunstig beliggende Lag end de hidtil kendte. Da Torvemoserne efterhaanden opskæres, og der som Følge deraf i mange Egne kan opstå en følelig Mangel paa Brændsel, ville Brunkullagene muligvis engang i Tiden kunne faa en Betydning, som de nu ikke have. De bør derfor ingenlunde ringeagtes, men fortjene at underkastes en grundigere Undersøgelse, end der hidtil er blevet dem til Del. 1)"

Den mindre gunstige Dom, der her er fældet over de jydske Brunkul, vil maaske Mange finde for strenge, naar man ser hen ti den udstrakte Bearbejdelse, der er blevet dem til Del andetsteds, f. Eks. i Preussen, hvor Produktionen i Aaret 1870 udgjorde ikke mindre end 152 Millioner Centner til en Værdi af over 7 Mill. Thaler. 2)

1) Udhaevet af mig. N. Hz.

I 1902—04 var Preussens Brunkul-Produktion og dens Værdi (Zeitschrift für praktische Geologie, 1906, Nr. 3):

<table>
<thead>
<tr>
<th></th>
<th>1902</th>
<th>1903</th>
<th>1904</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36,228,285</td>
<td>38,462,766</td>
<td>41,153,576</td>
</tr>
<tr>
<td></td>
<td>Tdr.</td>
<td>Tdr.</td>
<td>Tdr.</td>
</tr>
<tr>
<td></td>
<td>83,474,930</td>
<td>77,320,904</td>
<td>92,239,200</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>Mark</td>
<td>Mark</td>
</tr>
</tbody>
</table>

1) Udhaevet af mig. N. Hz.
De væsentligste Indvendinger, der er gjort mod de jyske Brunkuls Anvendelighed, er, at Kullagene er for tynde og Kullene for svovlholdige. De hidtil kendte Brunkullag er vel nok for tynde til, at det kan betale sig at udnytte dem; men hvor mange Brunkullags Mægtighed og Udstrækning kender man? Altfor faa til at have nogen begrundet Mening derom! Som det fremgaa af de foran givne Oplysninger om de hidtil kendte Brunkullag, har man i de fleste Tilfælde ikke gravet gennem de Kull, man tilfældigt er stodt paa ved Gravnning¹). Endnu mindre kender man til Kullagens Udstrækning. Fore naar man ved Boringer har konstateret de overste Kullags Mægtighed og Udstrækning (thi sandsynligvis findes overalt flere Kullag over hinanden) paa talrige Steder rundt om i Jylland, forst da har den Indvending Vægt, at Brunkullagene er for tynde.

Og nu Svovlholdigheden. Denne har hidtil ikke været bestemt, og dens Betydning maaske netop derfor overdrevet. I Skærbaekgaard-Brunkullene fandtes, beregnet til vandfri Tilstand, 3,29 % Svovl i Sandfeldgaard-Kullene 2,32 — 5,23 % i Voldborg Kær-Kullene 3,5 % Svovl. Ganske vist er dette hoje Svovlprocenter, men dog ikke højere end i forskellige tyske Brunkul, der anvendes til Briketter. De canadiske Dominion-Kul (Stenkul), der anvendes overordentlig meget som Dampskibs kul, indeholder (ifolge velvillig Meddelelse fra Hr. Gasværksbestyrer Høminger, Ostre Gasværk) c. 4 % Svovl. E. Erdmann angiver (1907) 0,82 — 1,87 % Svovl i de tyske Brunkuls Raakul og 1,16 — 4,66 % Svovl i Torstoffet; som Gennemsnitstal angiver han 1 — 1,5 % for grubefugtlige, 2 — 3 % for torrede Brunkul; men under tiden stiger Svovlprocenten for torrede Kul til 8 %, ja til 16 %, og selv saadanne Kul har man anvendt (Ost, Chemikerzeitung, 1896, S. 165). Langbein's Tabeller angiver en Svovlprocent for de tyske og bohmiske Raakul af 0,23 — 5,15 %, for vand- og askefri Kul af 0,31 — 7,38 %.

Til Sammenligning med de ovenfor angivne Brændværdier for jyske Brunkul anføres efter E. Erdmann l. c. følgende Brændværdibestemmelser:

Jordagtige Brunkul og Ligniter i Kongeriget og

Provinser Sachsen................................. 2000 — 3200 V.-E.
(beregnet til vand- og askefri Substans 6000 — 7700 —)

¹) I mange Tilfælde, hvor man ved Brondgravnning er naaet ned i et Brunkullag, har man ikke gravet igennem Kullene, men helt opgivet Bronden. fordi Vandet i Kullaget blev grumset, idelugtende og 'svovlets'. Man har vistnok ofte begaaet en Fejl herved, idet Vandet snart bliver rent og godt. I alle Tilfælde var det Vand, der ved Sandfeldgaard kom ud gennem de nederste Lag i Profilet, særdeles velsmagende og klart; Bronden i Fasterholt Gaard giver ogsaa godt Vand. skont den gaar 0,4 m. ned i Brunkullaget.
Briketter ... 4500—5300 V.-E.
Brunkul fra Niederlausitz 1800—2500 —
Almindelige bøhmiske Brunkul 4000—5600 —
Bedste bøhmiske Brunkul 5500—7200 —

De tyske Brunkuls Brændværdi er omtrent $\frac{1}{3}$ af Stenkullenes.

Med Hensyn til de tyske Brunkuls Egenskaber, Anvendelse m. m. henvises forovrigt til den udmærkede Oversigt, der gives i G. Klein: Handbuch für den deutschen Braunkohlenbergbau (1907).

Kun én Ting vil jeg endnu pege paa: Naar vore Brunkul har faaet et saa daarligt Ry, beror det vistnok for en stor Del paa, at de faa praktiske Brændforsøg, der er gjorte med dem, er foretagne paa Fyrsteder, der har været indrette til Fyring med Stenkul og ikke med Brunkul.

Diluviale Aflejringer.

Aflejringer af ubestemt Alder med ældre Præg.

Rav-Pindelagene i Diluvialsandet fra Istidens ældre Afsnit indeholder imidlertid — som det har vist sig ved mine Undersøgelser af deres Flora — saa mange tertiære Fro og Frugter (Carpolithes) (foruden Rav, Brunkul og endnu ældre, antagelig jurassiske Kul), at de må a these for at være ældre end nogen af de andre diluviale planteførende Aflejringer i Danmark.

Rav-Pindelag.

Almindelige Bemærkninger og ældre Litteratur.

Som Rav-Pindelag betegner jeg de mørktfarvede Lag i Diluvialsand, der indeholder en Blanding af tertiære og diluviale Planterarters Fro og Frugter, karakteriseret ved

*Carpolithes Johustrupii,
— Rosenkjærii,
Stratiotes Websteri og andre tertiære Arter samt
Brasenia purpurea,
Stratiotes aloides,
Carpinus Betulus og andre diluviale Arter*

Alle de nævnte Bestanddele i Lagene er meget stærkt rumlede. Snart optræder Lagene som tynde, sorte Striber, udelukkende bestaaende af fint Kulstøv, snart som metertykke, fastpakkede Lag af større Kul- og Vedstykker. Lagene er aabenbart sammenskyllede af Materiale af vidt forskellig Herkomst; det er den fælles ringe Tyngde, der har samlet Materialet i særlig Smaalag.

De iøjnefaldende, mørkfarvede Lag i det hvide Diluvialands maa selvfølgelig tidligt være blevne iagttagne, men de blev kun løseligt og tilfældigt omtalte i Litteraturen, indtil Amazon på Naturforskeren i Köbenhavn 1890 henledede Opmærksomheden paa, at de foruden Rav og Kul ogsaa indeholder Fro og Frugter.

Thomas Bartholin er vistnok den første, der (1671) omtaler, at Ravet optræder sammen med sort eller forkullet Træ, i Köbenhavns Jordbund (jfr. Chr. Vaupell, 1853 og G. F. L. Sarauw 1897); først langt senere omtaler Paludan (1824) og Forchhammer (1835 og 1845) et lille „Brunkullag“ af 1/2 Meters Tykkelse i Mødes Klint paa Moen, aabenbart et senere forsvundet Rav-Pindelag ligesom de af Forchhammer (1848) til „Brunkullformationen“ henforte Lag, der blev gennemgravede i Jærnbanegennemsnittet i Valby Bakke ved Köbenhavn 1).

Rav-Pindelag i Danmark.

Köbenhavn.

Thomas Bartholin’s ovenfor omtalte Ravfund i Köbenhavn er ikke noget enestaende; tværtimod foreligger der fra ældre og nyere Tid talrige Ravfund fra Köbenhavn og dels nærmeste Omegn, dels fra Moræneleret, men navnlig fra de Sandlag, der hyppigt

findes i Byens Undergrund. Som et Findested for Rav nævner V. Pingel (1887) den store Sandgrav ved Jagtvejen, og Mineralogisk Museum ejer talrige Ravstykker fundne ved Grundudgravninger og andre Jordarbejder i København og Omega; i mange Tilfælde er det oplyst, at Ravet er fundet sammen med Kul eller Træ. Et sjælligt stort Ravfund blev gjort i 1872 i Sand i 3 m. Dybde paa Blegdamsvej Nr. 32. Pingel omtaler, at ved Udvidelsen af Københavns Fæstningsgrave under Frederik III og Kristian V fandt man Ravstykker paa 80 til 100 Lod, „ogsaa her ledsagede af den kulagtige Masse, som ligeledes hyppigt følger med det opslyllede Rav [ved vore Ky- ster] og i Jylland kaldes Ravskarn, paa Fano (efter Prof. Erslev) æ Brøgg eller æ Dros.”

At gennemgaa alle de utallige Ravfund fra København og det øvrige Danmark ligger imidlertid udenfor dette Arbejdes Plan; her skal kun omtales enkelte udvalgte Lokaliteter, hvor Rav-Pindeagenes Lejringsforhold er forholdsvis vel kendte, og hvorfra der foreligger Indsamlinger af Fro og Frugter m. m.

Valby Bakke, hvortil jeg ogsaa regner Frederiksberg Bakke og Vestre Kirkegaard, er en af de danske Bakker, hvis Bygning er bedst kendt; den store Jærnbanegennemskæring i 1846 og dens Udvidelser i Slutningen af 90erne gav ypperlige Profiler gennem Bakkens centrale Partier, og talrige danske Geologer har i Tidens Løb besøgt, beskrevet og afbildet Profilerne. Væsentlig efter Ussing (1899 og 1904) skal jeg nedenfor give en kort Skildring af Bakkens Bygning; den er et typisk Eksempel paa en „Bundmorænebakkes” Blokstruktur. Umiddelbart under den øvre Moræne kommer den nedre; Grænsen mellem de to Moræner markeres paa mange Steder af en isskuret Brovægning i store Sten 1); paa en Strækning af 15 m. saa Rosenkler en Dag 8 store Sten; ellers er baade den øvre og den nedre Moræne ret fattige paa Sten, især større Sten.

Den nedre Moræne, der hviler paa Saltholmsskalk, viste sig i næsten hele Jærnbanegravens Længde sammensat af vældige Blokke af lagedelt Istidssand, som vekslede paa den mest uregelmæssige Maade med Partier af stenfrit Ler (Brokke-Ler) og almindeligt Moræner. Sandblokkene havde ofte en meget anserlig Størrelse, indtil ca. 70 m. i vandret Retning; den største Sandblok, Rosenkler iagttaget i Valby Bakke, blev udgravet i 1896—97; den naade helt op til Underfladen af den øvre Moræne og var afskaaret vandret under denne; dens Overflade var c. 3500 m², dens Tykkelse c. 8 m.; en anden Sand-

1) Saadanne »Brovægninger« mellem de to Moræner er ogsaa trufne paa flere Steder i København.
blok, der ikke blev helt udgraved, viste i Profilet en Mægtighed af c. 16 m. 1).

De store Sandblokke har nogenlunde beholdt deres vandrette Lægning, men er gennemsatte af ukallige Spring paa Kryds og tværs; de mindre Blokke er ofte stillede paa Kant 2). Hovedmassen af disse Sand- og Lerblokke er forsteningsfri; enkelte Sandblokke er dog rige paa Rav-Pindelag med Plantefrø, i Leret findes hist og her Mosrester (Mosler, se nedenfor), og et enkelt Sted er der fundet en Lerblok med sondertrykkede Skaller af Blaamuslinger.

Blokstrukturen i den nedre Møræne er allerede afbildet af Jouxstrup (1882, Tavle II, Fig. 2); senere har Ussing (l. c.) givet to Afbildninger af den; i Fig. 12 og 13 har jeg afbildet dels en Sandblok, ind-

Fig. 12. Sandblok i den nedre Møræne, Valby Bakke. 1896.
(De lodrette Striber i Mørænderet paa begge Sider af Sandblokken hidrører fra Gravemaskinens Tænder).

lejret i den nedre Møræne i Valby Bakke, dels et mindre Parti af en saadan Sandblok, der viser de talrige Forkastninger i Sandmassen;

1) Hvor Sandblokkene nær direkte op til den ovre Møræne, er de altid skarpt afskaerne foroven; kun sjældent ligger der i saa Fald Sten paa Grænsefladen mellem Sandblokken og Mørænen. (Rosenkler in litt. 19. 3. 1896).

2) Det af Ussing (1899, Fig. 52) afbildede og omtalte Brøndprofil ved Ny Carlsberg som viser -en regelmæssig Rækkefølge af to fladt udbredte Møræner-Atlejringer med lagdelt Sand imellem — gaar sandsynligvis ogsaa gennem en Sandblok; ved en enkelt Boring eller Brøndgravning vil det selvfølgelig altid være umuligt at afgøre, om et saadant Sandlag er et Lag in situ eller en los Blok; kun ved store Udgravninger, ved talrige Boringler eller i Klinter kan man vente at faa Klarhed i saa Henseende; naar Rosenkler i sine forskellige Afhandlinger altid taler om Sandblokke, er det efter min Mening ikke altid sikkert, om det drejer sig om Blokke (eller Flager) eller om egentlige Lag.
Sandblokkene er vandret afskaarne opadtil og dækkes af den øvre Moræne; en Del af denne er dog bortgravet paa begge Figurer.

I Valby Bakke har der fra gammel Tid været talrige Sandgrave; efter Københavns Bombardement 1807 hentede man i stor Udstrækning Sand fra Valby Bakke til Nybygningerne, og indtil Slutningen af forrige Aarhundrede fandtes endnu store Sandgrave rundt om i

Bakken, hvorom de talrige Huller i dens Overflade vidner den Dag i Dag. Man fortæller endnu i Valby om de betydelige Mængder af Rav, der samledes i disse Sandgrave, og man har tidligt været paa det rene med, at Ravet var nøje knyttet til „Ravskarnet“ 2; til de sorte Rav-Pindelag med deres Træ og Kul. VAUPELL (1853) omtaler, at „i Sandlagene viste sig lange, sorte, fordetmeste skraa eller vand-

Fig. 13. Sandblok i den nedre Moræne, Valby Bakke, 1896. Talrige Forkastninger i Sandlagene. (Stokken tilvenstre er en almindelig Spadserestok.)

Valby Bakke er en af de Lokaliteter, hvorfra de rigeste Samlinger af Rav-Pindelages Flora stammer; i JOHNSTRUP’s Samlinger herfra (og fra Ørdrup) konstaterede GUNN. ANDERSSON (1896) Fro af Brasenia purpurae og Stratioles aloides.

1) Citeres i det følgende som JOHNSTRUP’s Forarbejder.
2) ROSENLÆR fandt heri de første fra Danmark kendte Eoliter; han omtaler dem (1893, S. 23) i følgende Ord: „I det interglaciale Grus under Moræneleret ved Høpådsen (A) har jeg paa en mindre Plads fundet nogle Flintblokke og nogle afspalte Flintstykker, som synes at høre meget ran Spor af at have været behandlet med Menneskehaand.« Til disse Eoliter hamber jeg at komme tilbage i anden Sammenhæng: de opbevares paa Nationalmuseets 1ste Afdeling (Nrr. 11230—11233).

I Frihavnen samlede ROSENKLÆR et meget betydeligt Materiale af Fro og Frugter, som er optagne i Tabellen nedenfor.

De store Udgravninger i Valby Bakke og i Frihavnsterrænet er imidlertid ikke de eneste Løjligheder, ved hvilke Rav-Pindelagene er komne til Syne i København og dets nærmeste Omegn; ROSENKLÆR, der med saa spændt Opmærksomhed fulgte alle Udgravninger i København, har konstateret dem og samlet Fro og Frugter i dem paa forskellige Steder; ifølge ROSENKLÆR ligger de overalt indlejrede i Sandblokke i den nedre Moræne.

1) Iblantd ROSENKLÆR'S Samlinger findes smukt gront Glaukonitsand fra en Sandblok i Frihavnen. I sin Afhandling: Jordundersøgelser (1898, S. 71) nævner ROSENKLÆR ligeledes, at Sandet omkring de »fossilførende Strieber« er »noget gronligt — mere, jo finere det er«.

2) Ifølge Oplysninger fra Student UNSMAK 1874 blev der ved Udgravningerne ved Enighedsværn (Gasværkshaven) fundet Rav og Kul i Sandlag (c. 5 m. under Overfladen), der maa antages at være sammenhængende med den af ROSENKLÆR fra Langebro omtalte »Sandblok«.

7
Indsamlinger af Rav-Pindelag dels i Borgergade udfor Nr. 25, c. 9 m. under Gadens Niveau, dels i Dronningens Tværgade udfor Nr. 24—30, c. 8 m. under Gadens Niveau. Hølge skriftlig Meddelelse til mig fra Rosenkær var Grænsen mellem de to Moræner overalt i denne Udgravning skarp og markeret ved store Sten; der laa dog aldrig Kalksten paa Grænsen mellem Morænerne, medens der altid fandtes Kalksten i disse; den nedre Moræne var rig paa Sandblokke. Hvorvidt disse Sandblokke virkelig er Blokke og ikke Lag, forekommer mig ikke ganske afgjort.

Det øvrige Sjælland.

Ordrup. En Brondgravning ved Kirkevej i Ordrup i 1889 og de ved den Lejlighed gjorte Fund af Rav i Sand blev Anledningen til, at JOHNSTRUP kom ind paa en nærmere Undersøgelse af „Ravlagene“¹).

Samme Aar lod JOHNSTRUP foretage yderligere Gravninger paa samme Sted; fra denne Udgravning angives følgende Lagfølge („JOHNSTRUP's Forarbejder“):

0,4 m. Muld.
1,1 - Ler med Rullessten, hverv en graa Flint, der maalte omtrent 0,6 m. i Diameter.
2,7 - Hvidt Sand.
0,02 - Rødt, jærnholdigt Sand.
0,15 - Ravlaget.
0,02 - Rødt Sand.
Derunder hvidt Sand.

En Boring, som JOHNSTRUP i 1892 foretog i umiddelbar Nærhed af Udgravningen, paa en Terrænhojde af c. 12 m. o. H., viste følgende Lejringsforhold:

0,1 m. Muld.
1,5 - Stenet Glacialler [Moræneler].
6,8 - Sand med Rav.
0,3 - Sandblandet Ler.
2,8 - Sand.
0,3 - Grus.
3,1 - Sand.
3,1 - Blaaler [Stenfrit Ler?]
5,0 - Blaaler med Grus [Moræneler].
10,9 - Saltholmskalk.

¹) Nuværende Cand. mag. Fr. KNUDSEN, der assisterede JOHNSTRUP ved Gravningerne i Ordrup, var den første, der bemærkede Kogler og Fro i Rav-Pindelagene, ligesom han ogsaa fandt talrige Insekter i Ravet.
Om man her har truffet paa en Sandblok eller et paa primært Leje liggende Sandlag, kan naturligvis ikke afgores 1).

Blandt „Johnstrup's Forarbejder“ findes ogsaa en Udtalelse fra 1891 af K. Rørdam om Ravets Forekomst i den af ham undersøgte Del af Nordsjælland; ifølge Rørdam findes en sjælend Gang Rav blandt Bullestenene i Havstokken ved Kattegattets Kyster, f. Eks. ved Hornbæk og Tisvildeleje 2); hvorfra det stammer, vil Rørdam lade være usagt. Paa en Strækning af Kysten ud mod Roskilde Fjord, Syd for Frederiksværk angives det, at smaa Ravestykker ikke er sjældne paa Strandbredden; ifølge Rørdam stammer de fra Diluvialsandet, der her gaar lige ud til Vandal. „Om det inde i Landet forefundne Rav ere Beretningerne ganske ensartede; det synes altid at være i det under det ovre Moræneler værende Diluvialsand, at Ravet forekommer“.

„Ved Tjornegaards Teglværk ved Gjentoftes Station forekommer under Moræneleret meget fint Diluvialsand; heri findes ogsaa smaa Kullag. De for Tiden (1891) tilgengelige ere hoop ubetydelige og Kulstykkerne ganske sprode og henfaldende ved Torring, men Formanden for Lergraven berettede, hvad der ogsaa blev bestyrket ved samtlige Arbejderes Vidnesbyrd, at der i 1888 var fundet et Lag i Sandet, som indholdt ikke alene Kul som de nu tilgengelige Lag, men forkullede Træestykker og Grene samt „flere Torvekurve“ fulde af Rav, mest ganske smaa Stykker, der blev bortkastede; enkelte Stykker af Storrelse som en knyttet Haand blev dog ogsaa fundne”. I Birkerød Teglværk fik Rørdam (vistnok 1884) nogle Smaastykker Rav af en Arbejder, der havde fundet dem i det her benyttede stenfri Ler. „I en Sandgrav ved Hellebjerggaard, en Bondegaard Øst for Villingrod By i Tikjob Sogn, var Diluvialsandet i 1888 blot tet i et c. 3 m. hoj Profil; Sandet havde den sædvanlige Beskaffenhed og

1) Disse Gravninger og Boringer er tidligere nævnte af Gunnar Andersson (1896).
2) VAUPEL L. c., S. 51) siger: »Paa Flyvesandet ved Tidsvilde i Sjælland opskyles hverken Rav eller Brunkul."
indeholdt smaa Kullag. Ejeren af Gaarden havde ved Sandgravning fundet nogle Ravstykker i Kullaget."

I den nærliggende store Grusgrav i Vangede (ved Landevejen) har jeg ligeledes iagttaget tynde Rav-Pindelag i Diluvialsand.

Fra de store og smukke Profiler, der fremkom i Jærnbanegennemskæringen ved Espergjærde har Rosenkjer, i Sølyst Teglværksgrav ved Nivaa) N. V. Ussing foretaget Indsamlinger af Frø og Frugter i Rav-Pindelag.

„Fama simul cum prestantia maneat Succeino nostro ante Septennium et quod excurrut, apud nos in agro macro satiis alias invento! ut enim Prussiaco quovis purius, ita in majorem solito excreverat magnitudinem, ut ad modum lapidis cæteri, longum esset duos pedes, latitudinem habet pedis unius cum semi: crassitiem non multum latitudine dissimilem, palma saltem minorem.“

De andre danske Øer.

Fra de andre Øer kendes kun få Angivelser af Rav-Pindelag; de tidligere nævnte Lag i Madses Klint paa Møen er forlængst forsvundne; i Diluvialsand i Klinten udfor Liselund fandt jeg i 1899 enkelte smaa Rav-Pindelag, i Ristinge Klint paa Langeland har jeg ogsaa set saadanne, men det synes næsten, som om disse Lag ikke er synderlig udbredte paa Øerne.

Pingel (1887) nævner Gjedser Odde paa Falster som et Findested for store Ravstykker, men Rav-Pindelag kender jeg ikke fra denne Kyst.

De af Vaupell (l. c.) nævnte Fund af fossilt Træ fra Fyn synes efter Hofman Bang’s Oplysninger ikke at stamme fra Rav-Pindelag.

1) Rosenkjer (1901): »Paa Sjælland kommer sikkert de samme Lag frem [som paa Hven] ved Nivaa, men her ligger de lavere end Havets Overflade.«
Jydland.

I Jydland er Rav-Pindelag vidt udbredt i Diluvialsandet; det er dog kun spredte og tilfeldige lagtagelser, der foreligger, men efterhaanden som den geologiske Kortlægning af denne Landsdel skrider frem og Opmærksomheden refles mere paa disse Lag, vil der sikkert fremkomme talrige Fund.

De fyldigste Oplysninger om jydske Rav-Pindelag skyldes A. JESSEN (1899) og stammer fra Vendsyssels).

Lønstrup Klint. I de høje Klinter mellem Lønstrup og Løkken, der paa store Strækninger er dannede af Diluvialsand, forekommer talrige Rav-Pindelag i dette. Ifolge JESSES Skildringer (S. 90—91) varierer deres Mægtighed fra nogle faa cm. til et Par dcm.; snart indeholder de „større Gren- og Træstykker af indtil 1/2 dcm. Længde, med store Ravstykker og en Del Plantelevning, snart er Lagets Indhold mere finkornet med vært- eller nodstore, rullede Træstykker, smaa Stykker Rav og i Almindelighed stor Rigdom paa Fro, snart endelig kan Indholdet være meget fint, i hvilket Tilfælde Hovedmassen udgøres af Sand, og Plantelevningerne for største Delen af findelte Mosser." JESSEN omtaler og afbilleder, hvorledes „Ravlagene", „naar Klinten i nogen Tid har været tor og udsat for Bælst, træde frem som Ribber med en kruset og sortprirkket Overflade og derfor under gunstige Omstændigheder ere lette at finde."

Rav-Pindelagene optræder især i de mægtige Sandlag (indtil 15 m. mægtige) mellem Klintens Lerpartier, men ogsaa i underordnede Sandlag i Diluvialletteret, og JESSEN bemærker, at Planteresterne ikke altid findes som Lag, men ogsaa, om end i ringe Mængde, træffes jævnt fordelte i Sandmassen, oftest i de tynde og mellem Lerlagene liggende Sandlag.

I Lønstrup Klint fandt JESSEN, at Rav-Pindelagene kun optræder i det „ældre" Diluvialsand, som dels mellemlejrer, dels konkordant under- eller overlejer de mægtige Lerlag, og som hører til samme Lagserie og har samme Dannelsesstid som disse; i det „øvre" Diluvialsand, som synes at være betydeligt yngre og at staa i meget nær Forbindelse med det derover liggende Morænesand, forekommer Rav-Pindelag derimod ikke (l. c. S. 94).

Foruden det af JESSEN og mig indsamlede Materiale fra Rav-

Pindelag i Lonstrup Klint har jeg undersøgt meget store Samlinger herfra, foretagne af Rosenkær 1897; disse Samlinger stammer dels fra Klinten tæt SSV. for Rubjerg Knude, hvor et meget anseligt Rav-Pindelag (0,3—1 m. mægtigt), bestaende af mange, tynde Lag, løb skraat opad fra Havfladen og op til Klintens Top — og dels fra Rav-Pindelag noget Syd for „Johnstrup's Knude“ længere Syd paa.

Fra Vendsyssel foreligger desuden (Jessen, 1899, S. 93) et Par spredte Fund af Rav-Pindelag, hvori enkelte Fro og Frugter er fundne:

Hjøring By. En Boring i Hjøring viste følgende Lejringsforhold:

12,5 m. Diluvialsand.
8,2 - Kalkholdigt Diluvialler.
8,8 - Diluvialsand.
2,0 - + Planteværende Diluvialsand.

Det „planteværende Diluvialsand“ indeholdt en Mængde Plante- rester og Ravstykker; i en lille Prove herfra fandtes *Potomogelon* sp. og *Batrachium* sp.

Hvistshøj Gaard, Sydost for Brønderslev. En Boring ved denne Gaard viste omtrent samme Lejringsforhold som Boringen i Hjøring By:

4,7 m. Diluvialsand.
7,8 - Sandet Diluvialler.
22,9 - Fint Diluvialsand.
1,3 - + Grovt Diluvialsand.

En lille Prove fra 13 m. Dybde indeholdt smaa Ravstykker og Plantevester, blandt hvilke jeg bestemte: *Batrachium* sp., *Carex* sp., *Ceratophyllum*?, *Hippuris vulgaris* og *Potomogelon* sp.

VI fandt meget lidt Rav i disse Lag, kun et enkelt lille Stykke af Storrelse som et Knappenahlshoved; derimod fandt vi usædvanligt mange og store Stykker Brunkul og Brunkultræ — af Storrelse som en Haand eller endnu større.

I ét af Kulstykkerne fandt jeg — ved at kløve det — et Eksemplar af *Carpolithes Johnstrupii* m., som er saa almindelig i vores fast-staaende Brunkul (se S. 58) og som ligeledes hører til de hyppigst
forekommende tertiære Frugter i vore Rav-Pindelag. Det er imidlertid den eneste Carpolith, jeg har fundet i de talrige Brunkulstykker fra Rav-Pindelag, som jeg har undersøgt.

Rav-Pindelagene havde forovrigt det samme karakteristiske „smaaprikkede“ Udseende som i Lønstrup Klint og kunde straks genkendes oppe fra Klintens Rand.

I 1901 foretog Rosenkør for „Danmarks geologiske Undersøgelse“ en større Insdamling af Fro og Frugter i denne Klint; sammen med Samlingerne indsendte han nedenstaaende Skitse af Klinten og følgende Beretning om Fundforholdene:

![Fig. 14. Bovbjerg Klint udfør Fyret. Formindsket Kopi af den Skitse af H. N. Rosenkør 1901.](image)

"Der er, saa vidt jeg har kunnet skonne, kun én Moræne med fossiflorende Blokke helt ned igennem.

\(^1\) Det fremgaar af Rosenkör's Beskrivelse, at det netop var ved VII, at Prof. Ussing og jeg fandt de ovenfor omtalte Stykker Brunkul og Brunkultræ.

Et Sted var der et Parti, som engang var gledet langt ned. Heri var en stor Sandblok, som var bleven bojet om som vist paa Tegningen ved X. Havet havde slikket saa haardt paa denne Sandblok, saa der var dannet en dyb Hule ind i den. Derved var der rigtig Lejlighed til at se Lagenes Bøjning i en stor, meget spids Bue, uden at de var brudte. Denne Bøjning er foregaaet, da Sandblokken i sin Tid blev indlejret i Morænen. Det er ikke noget, som er sket ved, at Massen i vor Tid skred ned. Forholdene var meget klare og tydelige.

Man maa naturligvis ikke lade sig nære af Skreiddene saaledes, at man kommer til at tage de nedskredne Ting for den nederste Del af Morænen.∗

I Tabellen nedenfor har jeg opført de forskellige Prøver fra Bovbjerg under ét, da de var ganske ens.

Senere har A. Jessen (1905, S. 40) givet en fra Rosenklær's noget afvigende Beskrivelse af Klinten: „Ved Bovbjerg findes (saaledes) overst Moræneler, derunder diluviale Sand- og Gruslag med Fragmenter af marine Mollusker samt talrige norske og enkelte baltiske Blokke; derunder igen en Bænk Moræneler, og først i Diluvialsandet
under dette Moræneler findes de planteforende Lag" [3: Rav-Pindelagene].

Grenaa By. Ved en Brøndgravning hos Farver Graff (c. 1889) stodt man (ifolge Brev til Johnstrup fra Apoteker Hoffmeyer i Grenaa) c. 3 m. under Overfladen — under c. 0,6 m. Muldjord og c. 2—2,6 m. „Rullesten" (Moræneler?) — paa et Sandlag af 4—5 m. Mægtighed, hvor angives at være fundet „Egetræ, Kalksten af Grenaa sædvanlige Kalk, Flintesten og Brunkul i blod Masse med enkelte Muslinger." Brunkullenaa laa som et Lag af c. 0,3 m. Mægtighed i en Dybde af
7—9 m. under Jordoverfladen. De omtalte Muslingeskaller kunde Johnstrup ikke skaffe nærmere Oplysning om.

Glesborg. Om en Brøndgrævning c. 1883 ved Skolen i Glesborg, c. 10 km. Nordvest for Grenaa, foreligger der et Brev fra Lærer Jens Rasmussen i Glesborg, hvoraf jeg uddrager følgende Oplysninger: Under c. 0,5 m. Muld laa c. 4 m. sandblandet Ler og derunder c. 25 m. Sand, helt ned til Bund en af den c. 30 m. dybe Brond. Om- tret 25 m. under Jordoverfladen laa Rav-Pindelaget, der havde en Maegtighed af c. 0,2 m., „et løst Sandlag, der indeholdt ikke saa faa Brunkulstumper og harpiksagtige eller ravnlysende Stumper; baade disse og hine vare smaa, fra en Trænods til en Valnøds Størrelse, og saamange, at man i en almindelig Haandfuld Sand kunde tage en halv Snes Stykker.“

De samme Jordlag fandtes (ifølge samme Brev) i en Brond, der omtret paa samme Tid blev gravet i Løen, c. 2 km. Sydvest for Glesborg.

Lunderskov. En Boring ved Mejeriet „Kronborg“ i Lunderskov, udført 1903 af Boreingenior Marus Knudsen, Odense, gav i en Dybde af c. 28,5—29,8 m. en Del smaa rullede Træ- og Kulstykker af samme Udseende som Rav-Pindelagenes. Borejournalen, der findes i Mineralogisk Museum, angiver følgende Lag:

13,0 m. Brønd.
1,2 - Sand.
6,3 - Sand, lerblandet.
2,2 - Grus.
1,2 - Sand, lerblandet.
4,5 - Sand, lerblandet.
1,1 - Sand og „Træ“.
8,0 - Sand.
37,8 m.

Rav-Pindelagene, hvis Bestanddele hærer tydeligt Præg af at være blevne stærkt omtumlede og rullede (af Istidens Smellevands-
floder og Bræelve), for de havnede i Rav-Pindelagene, er naturligvis i mange Tilfælde senere atter bleve udvaskede af det lose Diluvialsand; Kul- og Træestykker, Rav, Frø og Frugter fra disse Lag kan derfor træffes i yngre Aflejringen sammen med Dyr og Planter, i hvis Selskab de ikke rigtig passer.

Jeg har tidligere (1901, S. 43 og 1902, S. 41) omtalt, at jeg i 1897 i Langhøj’s Teglvaerkgrav i Stenstrup (Fyn) gjorde det forbloffende Fund af Brasenia purpurea-Fro, Carpinus betulus-Frugter og Ceratophyllum demersum-Frugter i senglacialt Ler c. 3 m. under Overfladen; disse Fro og Frugter laa sammen med talrige Rav- og Brunkulstykker, smaa Brokker af meget fast, komprimeret (interglacial?) Tørv, samt Blade af Salix polaris og andre almindelige senglacial Planter. Senere fandt jeg i Allerød Teglvaerkgrav (ved Lillerød) en rullet Nød af Carpinus betulus sammen med rullede Smaapinde, Ravstykker og arkanske Planter f. Eks. Betula nana, Salix polaris og Salix reticulata m. m. Jeg gjorde allerede den Gang opmærksom på, at Brasenia, Carpinus og Ceratophyllum maa antages at være skyllede ud fra Rav-Pindelag i Diluvialsandet i de omliggende Bakker.

Rav- og Kulstykker findes forovrigt ofte udskyllede i vore senglacial Ferskvandsaflejringar; fra Knabstrup Teglvaerkgrav omtales det af K. Børdam og V. Milthers (D. G. U., I. R. Nr. 8, 1900); i Teglvaerksgraeven ved Hødehusene og i flere andre Teglvaerksgraevene med senglacialt Ler har man ofte fundet mindre Ravstykker.

Rav-Pindelag udenfor Danmark.

Rav-Pindelag forekommer naturligvis ikke blot i det danske Diluvialsand; det fremgaar af Litteraturen, at de — eller i alt Fald habituelt lignende Lag — er vidt udbredte i det nordtyske Lavland og i Skaane; men deres Indhold af Fro og Frugter og Arternes fuldstændige Overensstemmelse med de danske Rav-Pindelags blev først konstateret af Rosenkær saavel for Nordtyskland (Itzehoe) som for Sverige (Hven).
Tyskland.

Det vilde blive for vidtloftigt at anføre alle de Angivelser af Rav-Pindelag, jeg har fundet i den tyske geologiske Litteratur; først naar disse Lag bliver palæontologisk undersøgte, faar de større Interesse; jeg indskrænker mig til følgende Eksempler, som vistnok i store Træk angiver Rav-Pindelagens geografiske Udbredelse i Nordtyskland.

Zaddach (1869) omtaler „Bernsteinmester“ og „Bernsteinåder“ i Vestpreussens og Pommerns Diluvialsand; de stemmer ganske overens med de danske Rav-Pindelag. „Die Braunkohlen sind haufig so vollständig zerrieben, dass sie den Sand nur noch schwach färben und sich zwischen den Fingern gänzlich zerreiben lassen; andere Stuecke sind dagegen fest, von deutlicher Holzstruktur, meistens kleine Splitter, selten, aber zuweilen grössere Ast- und Stammstücke.“

„Bernstein ... wie Braunkohlenstücke sind stets an Ecken und Kanten abgerundet.“

Der er næppe Tvivl om, at det Brasenia-Fro, som Kehlack (1895) fandt i en Boreprobe fra Kronsburg ved Rendsborg, stammer fra et Rav-Pindelag. Kehlack skriver herom:

„Ferner liegen in der Sammlung der geologischen Landesanstalt einige Bohrproben von Kronsburg bei Rendsburg, die bei 23—24 m. aus zerriebenem pflanzlichen Detritus bestehen und von diluvialen, nordischen Sanden unter- und überlagert werden. Auch in dieser pflanzlichen Schicht fand ich einen Cratopleura 2).“

1) Samlands »gestreifter Sand«, som ogsaa indeholder Rav, er derimod teriært, glaukonitisk Glimmersand, liggende mellem Samlands to Brunkulfötzer, og har altsaa intet med Rav-Pindelagene at gore, jfr. Særew, 1897, S. 24, Fodnote 2.

2) At Cratopleura holistica C. Weber er synonym med Brasenia purpurea Michx. prævistes 1896 af Gunnar Andersson.
Paa en Rejse i Holsten 1898 fandt ROSENKLÆR Rav-Pindelag ved Itzehoe (og Wandsbeck?) og samlede et anseligt Materiale af Planterester i disse Lag. Om Itzehoe meddeler han (1898, S. 72), at der i den nederste Moræne findes talrige „Blokke“, de fleste tertiære, men „enkelte mindre skandinaviske Sandblokke imellem“. I tre af disse var der sorte Striber med Planterester. „Disse Sandblokke svarede i alle Maader fuldt ud til Sandblokkene i Nordsjælland“. I Breve, der fulgte med det herfra indsamlede Materiale, giver ROSENKLÆR desuden følgende Oplysninger: Prove I samledes i en Sandblok i den nederste Moræne i Teglværksgraven; Graven var c. 40 m. dyb; den sorte fossilførende Stribe var ganske tynd, knap $\frac{1}{4}$“ (6 mm.); den var omgivet af grønlig Sand. Prove II toges i en grønlig Sandblok i den nederste Moræne i Teglværksgravens Bund. Her fandtes ingen sammenhængende sort Stribe, men kun tynde Plader, der laa spredte omkring i det meget fine Sand. Den sorte Stribe, hvoraf Prove III toges, var c. $2\frac{1}{2}$ (5 cm.) tyk; Sandet var meget grovere end i de to andre Prover; Proven toges i en Sandblok i den nederste Moræne. Prove X stammer fra en lille Sandblok i den overste Kant af Morænen i samme Grav.

Om Wandsbeck skriver ROSENKLÆR (in litt.): „Proven blev taget i MEVERS Teglværk i et stribet Grus- og Sandlag, som gaar fra Jordoverfladen nedad, i 7 m. Dybde under Jordoverfladen. Den sorte Stribe var næsten $2\frac{1}{2}$ (5 cm.) tyk. Hele Laget er vel nok interglacialt. I hvert Fald er det yngre end den nederste Moræne.“

Sandet var ret grovt, og Laget indeholdt meget faa Fro (Taxus, Hippurus og Menyanthes); det er vel tvivlsomt, om det er et egentligt Rav-Pindelag.

Sverige.

HVEN. I Sommeren 1895 paaviste ROSENKLÆR talrige Rav-Pindelag paa HVEN (1896,2); i PETERSEN & FRIMØRT’s store Teglværksgrav

1) Disse 4 Prover har jeg slaaet sammen i Tabellen nedenfor, da de indholder ganske samme Flora.
paa Oens Nordspids fandt han „i meget betydelig Dybde (c. 25 m.) under Jordoverfladen, i Højde med Havoverfladen” „et helt System" af tynde, sorte Rav-Pindelag, der laa vandret og som tilsammen havde en Magtligthed af 0,3 m. Lagene viste sig at indeholde ganske samme Flora som Rav-Pindelagene ved København; de laa ligesom her i tind lagdelt Sand med vandret Lagstilling, under det blaa, stenfri Teglværksler (jfr. ROSENKLÆR 1898 og 1901).

I 1906 offrer GUNNAR ANDERSSON Rav-Pindelagene paa Hven en forholdsvis udførlig Omtale; denne Afhandling kommer jeg senere tilbage til (S. 117).

Længe forinden er dog lignende Lag beskrevne fra Sverige, uden at man har bemærket Fro og Frugter i dem.

Allerede i 1826 omtaler S. NILSSON „Kullag”, der vistnok er Rav-Pindelag, fra de hoje Sandkliner ved KASEBERGA i det sydøstlige Skaane nær Ystad 1). Disse Kullag var 1,2—2’’ (1—5 cm.) tykke og bestod dels af Kul, der lignede HÖGANÄS-Kul, dels af „riktiga Brunkol eller Lignit... Dessa brunkol beståa af trädstycken, som utvändig och i langslyfterna visa oförändrad textur, kastanjbrun färg, och likna murkna trädbitar; men tvårbrottet är glänsande och visar att de äro alltigenom bituminiserade. De äro tyngre än vanligt trä och alla af dicotyledonisk textur.”

VAUPEL (1853, S. 54) omtaler forskellige äldre Fund af Rav paa Falsterbo Strand og Ravets Forekomst sammen med Brunkul; det fremgaar af VAUPEL’s Afhandling, at allerede CHRISTIAN IV i et Brev taler om Ravet fra denne Egn, som ogsaa findes omtalt i LINNE’s Rejse i Skaane.

At Rav-Pindelag ogsaa forekommer paa den skaanske Kyst Sydøst for Hven, fremgaar af følgende Citat af E. ERDMANN (1875): „Vid en borning, som helt nyligben utførts vid LODDESBO, utmed kusten mellan Malmö och LANDSKRÖNA, för erhållande av vatten, träffades, på 249 fots [78 m.] djup, sedan, enligt borsjournalen, flera lager lera, grus och sand (troligen krostenslera med deri liggande skiktade lager) blifvit genomborrade, ett „mosslager med växtrotter“. Ett mig af detta lager tilsåndt prof utgöres af en, med en mängd växtfragment blandad, temligen grof sand, ganske lik sådan man ofta annu i dag ser å vissa ställen vid hafsstränderne. Af dessa växtfragment utgöres till största delen af små, en eller ett par linier långa, bitar af bark samt delar af rötter och quistar, som äro rund-notta i följd af den slitning mot sandkornen de varit underkastade då lagret, annu obetäckt, lag öppet för boljörelsen vid någon form..."

strand. Profvet innehöll äfven fragment af skalbagger samt några mossor, hvilka ännu ej kunnat bestämmas, samt några smulor af bersten. De närmast underliggande lagrens beskaffenhet är för mig ännu obekant."

De af A. G. NATHORST (1872) omtalte Kulfund ved Nor dana horer muligvis ogsaa herhen: „Den kulle, hvorpa quarnen ved Nor dan a [Görslof Sogn i Skaa ne] er belägen, utgöres jemte en annan vester derom belägen kulle af skiktad sand, som har några graders stup ning mot vester, och hvilken sand öfverlagras af krossstenslera. I sanden förekomma tunna lager, som till sin största del utgöras af småra kolfragmente jemte inneliggenda enstacka större stycken. Dessa större kolstycken äro här mycket sköra och falla sönder vid minsta beröring, men liknande stycken i söttvattensleran, hvilka på tagligen bliifvit ursköljda ur sanden, äro mycket väl bevarade, förete en tydlig trådertad struktur, havfa en stor likhet med brunkol och innesluta ofta små partier af svaavelkis. Sanden måste naturligtvis antingen vara äldra än hela istiden eller åtminstone tillhöra en tidligare period däraf. kollemningarne torde möjligen harröra af för störda brunkolbildningar. Öster om Nor dana förekommer samma bildning i en uppskjutande kulle, och då stjupningen på alla dessa ställen är ungefär den samma, synes det, da de östligaste och vestligaste kullarnes afstånd från varandra är nära ⅓ mil, som om denna bildning skulle éga en rätt ansenlig maktighet."

Derimod synes det, som om det af B. LUNDGREN (1871) omtalte Rav fra Fyllinge i Halland (nær Halmstad) er fundet i alluviale Lag. Ravet fandtes sammen med Plantester og Brunkul; Plantesterne bestod af Rodtraade, som sandsynligvis tilhører levende Plantester, Stykker af Ved af Lovtræer, Hasselnodder i ret stort Antal, Pollenkorn och to almindelige Ferskvands-Diatoméer: Tabellaria flocculosa och Pinnularia viridis.

I Rav-Pindelag, som Statsgeolog, Dr. N. O. HØLST har paavist paa det geologiske Kortblad Bør ringe Klo ster i Skaa ne, fandt jeg ved at gennemgaa det mig overlade Materiale en Del karakteristiske Rav-Pindelag-Arter foruden Polarplanter; nærmere Oplysninger om Lejningsforholdene vil fremkomme i Beskrivelsen til dette Kortblad fra Dr. Hølst’s Haand; de fundne Arter omtales nedenfor S. 127.

Norge.

Fra Norge kendes ingen Rav-Pindelag; det forekommer mig imid lertid sandsynligt, at de vil findes i Jæderens diluviale Lag, og jeg bestyrkedes i denne Tro ved en mundtlig Udtalelse af Prof. W. C.

Rav-Pindelagernes Flora.
Undersøgelser indtil 1906.

Kul og Brunkultræ. Alle de Forfattere, der har beskæftiget sig med Rav-Pindelag i Sjælland, er enige om, at en Del af Kulstykkerne i disse Lag er rhætiske eller Jura-Kul, men en nærmere botanisk Undersøgelse af disse Kul er aldrig foretaget.

De tertiære Træstykker (Lignit) fra Rav-Pindelagene er des undersøgte af Vaupell (1853), dels af Sarauw (1897); de af Conwentz (jfr. ovenfor S. 10) omtalte „Geschiebölzer“ hidrører vel også — i hvert Fald til Dels — fra Rav-Pindelag. De af Vaupell undersøgte Vedprover, om hvilke det kan antages, at de stammer fra Rav-Pindelag, henforte han til følgende Arter:

Taxites scalariformis Göpp., Blaavandshuk og Fano.

"Zobeliana* Vaup. 2), Riis Klint, Fano og flere Steder ved Vesterhavet, Falsterbo.

Pinites sevarenicus Vaup., Fano, Blaavandshuk, Nissum Fjord, Hagen i Thy.

"Zeuschnerianus* Vaup., Fano.

"*flexuosus* Vaup., Syl.

"*Brazelii* Vaup., Falsterbo.

"*Tool* Vaup., Blaavandshuk.

"*tenniperrosus* Vaup., Valby Bakke, Stranden Vest for Ringkøbing Fjord.

"*Fanicorum* Vaup., Fano.

"?*maculatus* Vaup., Fano.

Pinites tenniperrosus angives udtrykkeligt samlet i Sandgravene i Valby Bakke i Selskab med Rav.

I det marine Ler ved Opgodtedegjør paa Jæderen fundt Bjørlykke et lille Stykke Kul (1. c. S. 25).

2) Intet fossilt Naaletræ er hos os saa almindeligt som denne Art, siger Vaupell (1. c. S. 56), der dog ikke er helt sikker paa, at den er artsforskellig fra *Taxites Ayckeii* Göpp.; den mest almindelige Form i Brunkullagene i Nordtyskland samt paa Stranden i Samland.

I det marine Ler ved Opgodtedegjør paa Jæderen fundt Bjørlykke et lille Stykke Kul (1. c. S. 25).

2) Intet fossilt Naaletræ er hos os saa almindeligt som denne Art, siger Vaupell (1. c. S. 56), der dog ikke er helt sikker paa, at den er artsforskellig fra *Taxites Ayckeii* Göpp.; den mest almindelige Form i Brunkullagene i Nordtyskland samt paa Stranden i Samland.
1897 bestemte SARAUW fra Rav-Pindelag Ved af:

* Cupressinoxylon cfr. uniradiatum et suberquale GOEPP. (= *Pinites tenniporosus* VAUP.), Valby Bakke, Ordrup.

Larix Lk. eller *Picea* Lk. 1), Ordrup, (Buddinge).

Pinus silvestris, Ordrup og Valby Bakke.

"*succinifera* Conw. ex parte, Frihavn.

Quercus sp., Valby Bakke.

Desuden Ved fra Ordrup af et ubekendt Lovtræ, „nærmest af udseende som den ovre del af en frugtstilk. Træet synes ikke at tilhøre vor nulevende flora; men på en nærmere bestemmelse vover jeg ikke at indlade mig."

Frø og Frugter. *JOHNSTRUP's Samlinger* af Frø og Frugter fra Rav-Pindelagene i *Ordrup* og *Valby Bakke* (Vestre Kirkegaard) — de første Fund af Frø og Frugter fra Rav-Pindelag — blev undersøgte og bestemte af Cand. mag. O. ROSTRUP; Materialet opbevares i Mineralogisk Museum, forsynet med O. ROSTRUP's Etiketter, og i *JOHNSTRUP's Forarbejder* foreligger en af JOHNSTRUP udarbejdet Fortegnelse over de den Gang bestemte Arter, i alt 18, der blev meddelt paa Naturforskermodet i København 1892 2); et Brev fra Apoteker Chr. JENSEN, Hvalso, oplyser desuden, at han i Materialet fra Ordrup har fundet 2 Mosarter: *Amblyslegium intermedium* og *A. scorpioides*.

I *ROSENKLÆR's To Afhandlinger om Frihavnen* (1893 og 1896) angives følgende Arter fra Rav-Pindelag, bestemte af O. ROSTRUP:

- *Pinus silvestris? [Najas marina].
- *Batrachium* sp.
- *Carex* sp.
- *Ceratophyllum oxyacanthum* (syn. *demersum*).
- *Cladium mariscus*.
- *Hippuris vulgaris?*
- *Menyanthes trifoliata*.

2) Blandt *JOHNSTRUP's Forarbejder* findes ogsaa 21 Blyantstegninger af Frø og Frugter fra disse to Lokaliteter, udførte af O. ROSTRUP. — At nogle af disse første Bestemmelser af det meget vanskelige Materialet er urigtige, kan ikke undre; thi Materialet er ofte saa stærkt rullet, at det er ganske ukendeligt; forst efter Undersøgelse af et meget stort Materialet med talrige Overgangsformer og efter mikroskopisk Undersøgelse er det muligt at identificere Arterne; eksempelvis skal nævnes, at *Carepinus*-Nodderne rent habituelt ofte faar Lighed med Frø af *Viburnum Opulus*!!
Potamogeton sp.
Scheuchzeria palustris [Brasenia purpurea].
Scirpus sp.

"Desunden et Frø af en Plante, der ikke lever i Nutiden i Danmark" [Stratiotes aloides].

De Rettelser af O. Rostrup's Bestemmelser, der er tilfojede i [], blev foretagne af Dr. Gunnar Andersson, Stockholm, under et Besøg paa Mineralogisk Museum i 1895; Hippuris, som O. Rostrup opfører med *, er rigtigt bestemt.

1895 publicerede O. Rostrup en Fortegnelse over Frø fra Frighavnen, indsamlede „i forskellige Læg c. 30 Fod (c. 10 m.) under Havfladen og c. 15 Fod (c. 5 m.) under Havbunden, som den var, da Udgravningerne begyndte."

Denne Fortegnelse indeholder følgende Arter:

Pinus silvestris [Najas marina].
(Ajuga reptans) [Rubus idæus]
* Batrachium sp.
* Carex sp.
Ceratophyllum oxyacanthum (syn. demersum).
(Cirsiu sp.)
Cladium mariscus.
(Cornus sp.)
(Eriophorum sp.)
Hippuris vulgaris?
(Limnanthemum nymphaeoides).
Menyanthes trifoliata.
* Potamogeton sp.
Scheuchzeria palustris [Brasenia purpurea].
* Scirpus sp.

Denne Fortegnelse indeholder — som det ogsaa fremgaar af Rosenkjær's Afhandling (1896, S. 275—76) — ikke blot Arter fra Rav-Pindelagene, men ogsaa Arter fra Gytjeblokkene (se nedenfor S. 131—133) og gav Anledning til, at Floraerne i disse to forskellige Allejringer, som Rosenkjær selv holdt Æde fra hinanden, blev sammenblandede i de følgende Aars Litteratur (Sarauw, 1897 og Gunnar Andersson, 1906); de Arter, der hører hjemme i Gytjeblokkene, har jeg sat i Parentes; Arter af de med * mærkede Skægter forekommer i begge Slags Allejringer.

Under et Besøg i København i 1895 saa Dr. Gunnar Andersson, Stockholm, Samlingerne fra Rav-Pindelagene i Ordrup og Valby Bakke og fandt i Materialet fra begge disse Lokaliteter Frø af Bra-
senia purpurea Michx.; de laa i Mineralogisk Museums Samlinger etiketterede som Schewchzeria palustris?

Det følgende Aar viste Andersson (1896), at alle de til Slekterne Holopleura Casp. og Cratopleura C. Weber tidligere henforste tertiære og diluviale Frø samt Brasenia Victoria Weherbauer og Carpolithes oolatum Brong. i Virkeligheden er Frø af den endnu levende Carbombacé Brasenia purpurea Michx.¹)

I den samme Afhandling nævner han ligeledes fra Ordrup og Valby „Folliculites carinatus“ (som Keilh. 1896 viste er Frø af Stratiotes aloides). Fra Rav-Pindelag i Ordrup og Valby omtales, foruden de to nævnte, følgende 4 Arter:

Pinus silvestris.
Mycapathum trifoliata.
Myriophyllum spicatum.
Najas marina.

Sarauw's Fortegnelse (1897, S. 20) over Frø „i sandblokke eller lerlag“ i den nedre Mørene i Frihavnen, bestemte af O. Rostrup, er væsentlig den samme som O. Rostrup's 1895; som Tilføjelser til denne kan nævnes:

(Makrosporer af Selaginella (eller Isoëtes)).
(UMBELLIFERÆ).
(Cornus sanguinea).

Alle disse ny-tilføjede Arter stammer fra Gytjeblokken (hvorfor jeg her sætter dem i Parentes), ligesom de af Sarauw i Fodnoten omtalte Fyrrekogleskæl (jfr. Rosenk. 1896, S. 276 og 281)²).

¹) Gunnar Anderssøns Figurer af Brasenia fra Ordrup er reproducerede paa min Tavle V, Fig. 17—21.
Fra Lønstrup Klint anføres (Jessen, 1899) følgende Planter, bestemte af Chr. Jensen og mig:

- Amblystegium intermediate.
- scorpioides.
- stramineum.
- Alnus glutinosa.
- Batrachium sp.
- Brasenia purpurea.
- Carex sp.
- Carpinus betulus.
- Ceratophyllum sp.
- Hippuris vulgaris.
- Menyanthes trifoliata.
- Myriophyllum sp.
- Najas marina.
- Potamogeton sp.
- Sparganium sp.
- samt 2 vistnok tertiære Frugter.

De faa Arter, der fandtes i Hjøring og ved Hvilshøj Gaard, er nævntede S. 102.

I Rosenkæjers Arbejde: „Fra det underjordiske København“ (1906) har jeg endelig meddelt en foreløbig Fortegnelse over Fro og Frugter fra Rav-Pindelag i København (Borgergade, Dronningens Tværgade og Havneudvidelsen i Kalvebodstrand) — indeholdende 27 Arter; blandt disse omtales for første Gang i Litteraturen følgende 3 tertiære Arter: Brasenia purpurea Michx., Carpolithes Rosenkæjerii m. og Carpolithes Valbyensis m.; C. Valbyensis har jeg senere identificeret med Elæocarpus globulus P. Menz. fra de miocene Brunkul ved Senftenberg, og den bor derfor atter udgaa af Litteraturen.

Fra Hven angiver Rosenkæjer (1896,2) følgende Arter, bestemte af O. Rostrup og samlede i de „faststaaende Lag“ i Petersen og Frimodt’s Tegl værksgrav:

- Batrachium sp.
- Brasenia purpurea.
- Ceratophyllum oxyacanthum (syn. demersum).
- Hippuris vulgaris?
- Menyanthes trifoliata.
- Potamogeton sp.

Desuden angives to Froarter, som det endnu ikke er lykkedes at bestemme; det ene er det i Lag af denne Art almindelig forekom-
mende firerummede 1). Mange smaa Trækulstykker ere aldeles kuglerunde og saa glatte, at de have stor Lighed med Fro af Korsblomster 2).De fleste af Froene bære ikke Spor af Slid; de se ud som om de vare voksede i Fjor," siger ROSENJÉR.

I Aaret 1906 offentliggjorde GUNNAR ANDERSSON en Fortegnelse over 23 Arter fra „Bernstein- und Zweigschichten“ paa Hven og drager enkelte Arter fra Frihavnen, Valby og Ordrup ved København med ind i denne Fortegnelse til Sammenligning; en Del af de Arter, der opfores fra Rav-Pindelag i Frihavnen, stammer imidlertid — som ovenfor bemærket — fra Gytjeblokkene.

Viburnum Opulus, der anfores fra Hven, er vistnok en meget medtaget Nød af Carpinus betulus.

Et Blik paa nedenstående Tabel viser dels Udviklingen af vort Kendskab til Rav-Pindelagens Flora i Tidsrummet fra 1892 til 1906, dels den fuldstændige Overensstemmelse mellem Flora’erne fra de forskellige Lokaliteter — en Overensstemmelse, som forovrigt træder endnu tydeligere frem i Tabellen S. 119—121, i hvilken jeg har samlet alle de Arter, jeg har kunnet bestemme fra Rav-Pindelag.

Paa de Lokaliteter, der har den rigeste Flora, har ROSENJÉR foretaget Masse-Indsamling i Tøndevis og Slæmning i stor Stil; det viser sig tydeligt, at en fyldig Repræsentation før disse Lags Flora kun kan faa paa denne Maade.

<table>
<thead>
<tr>
<th></th>
<th>Rav-Pindelag.</th>
<th>Ordrup</th>
<th>Valby-Bække</th>
<th>Frihavnen</th>
<th>Læsstrup</th>
<th>København</th>
<th>Hven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiære Arter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasenia purpurea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpolithes Rosenkjærri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Valhyensis (Elvocarpus globulus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diluviale Arter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenococcum geophilum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblystegium intermedium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" scorpionides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" stramineum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Hermed menes Carpolithes Rosenkjærri, som i Reglen er trerummet, men under tiden firerummet, jfr. Tavle IV. Fig. 11—13.

2) En Del af disse er vistnok Peridier af Cenococcum geophilum.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Orstrup</th>
<th>Valley Bakke</th>
<th>Frihavnen</th>
<th>Læsøstrup</th>
<th>København</th>
<th>Hven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxus baccata</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Atriplex sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Batrachium sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Brasenia purpurea</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Carex sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ceratophyllum demersum</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chenopodium sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cladium mariscus</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Comarum palustre</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Empetrum nigrum</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Hippuris vulgaris</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Hydrocharis morsus ranae</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Menyanthes trifoliata</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Myriophyllum spicatum</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Najas marina</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Oenanthe phellandrium</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Potamogeton spp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ranunculus cfr. flammula repens</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ruppia maritima</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Scirpus lacustris</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" Tabernaemontani</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sparganium ramosum</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Thalictrum sp.?</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Stratiotes aloides</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Umbellifera</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Viola cfr. palustris</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Zannichellia palustris</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Undersøgelser efter 1906.

Resultatet af min Bearbejdelse af det vældige Materiale af Frø og Frugter fra Rav-Pindelagene har jeg sammenstillet i nedenstående Liste. Den allerstørste Del skyldes ROSENKLÆR’s utrættelige Samler-flid; Materialet fra Nivaa er samlet af Prof. Ussing. En meget stor Del af Materialet har jeg desværre maattet lade ubestemt, dels paa Grund af dets slette Bevarelsestilstand, dels af Mangel paa Sammen-ligningsmateriale.

Af denne Liste fremgaar det, at Floraen er saa at sige ens saavel indenfor som udenfor Landets Grænser; naar enkelte af Lokalite-terne indeholder flere Arter, saa heror dette sikkert kun paa, at Proverne fra disse Steder har været forholdsvis smaa. Hvad der i Listen er opført under Rubriken „København“, hidrører fra de oven-nævnte Indsamlinger i Borgergade og Dronningens Tvangade.

<table>
<thead>
<tr>
<th>Rav-Pindelag.</th>
<th>København</th>
<th>Kalvebakken</th>
<th>Bybroen</th>
<th>Bjælkes</th>
<th>Frihavnen</th>
<th>Odrup</th>
<th>Tønnergård</th>
<th>Espergærde</th>
<th>Nivaa</th>
<th>Lønstrup</th>
<th>Lolland</th>
<th>Bosløj</th>
<th>Høje-</th>
<th>Hven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiære Arter:</td>
<td></td>
</tr>
<tr>
<td>Pinus cfr. Hageni HEER.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasenia purpurea MICHX.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpolithes Dalgasii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Hafniensis m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Johnstrupii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" le Mairii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Ordrupensis m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Rosenkjerii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Steenstrupii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Ostrupii m.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaeocarpus globulus P. MENZ.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratiotes Kaltennordhemensis (ZENK.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitis teutonica Al. BR.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diluviale Arter:

<p>| Chara sp. | + | + | + | + | + | + | + | + | + | + | + | | | |
| Cenococcom geophilum | + | + | + | + | + | + | + | + | + | + | + | | | |
| Amblystegium Cossoni | + | + | + | + | + | + | + | + | + | + | + | | | |</p>
<table>
<thead>
<tr>
<th>Bry-Pindelag</th>
<th>Kolshaven</th>
<th>Sandby</th>
<th>Stubbekastrup</th>
<th>Chris</th>
<th>Elmelunde</th>
<th>Middelhöjd</th>
<th>Glaes</th>
<th>Blavand</th>
<th>Frisientine</th>
<th>Odrup</th>
<th>Tyskeagard</th>
<th>Ejegårdere</th>
<th>Kræmmende</th>
<th>Nørre</th>
<th>Langelund</th>
<th>Bogø</th>
<th>Bogøøst</th>
<th>Hoves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblystegium exannulatum</td>
<td></td>
</tr>
<tr>
<td>• fluitans</td>
<td></td>
</tr>
<tr>
<td>• giganteum</td>
<td></td>
</tr>
<tr>
<td>• intermedium</td>
<td></td>
</tr>
<tr>
<td>• scorpioides</td>
<td></td>
</tr>
<tr>
<td>• Scutltueri</td>
<td></td>
</tr>
<tr>
<td>• stramineum</td>
<td></td>
</tr>
<tr>
<td>Hypnum trichoides</td>
<td></td>
</tr>
<tr>
<td>Selaginella spinosa</td>
<td></td>
</tr>
<tr>
<td>Picea excelsa, Blade</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Taxus baccata</td>
<td></td>
</tr>
<tr>
<td>Acer sp.</td>
<td></td>
</tr>
<tr>
<td>Ajuga reptans</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td></td>
</tr>
<tr>
<td>Batrachium sp.</td>
<td></td>
</tr>
<tr>
<td>Betula sp.</td>
<td></td>
</tr>
<tr>
<td>Brasenia purpurea</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Carex sp.</td>
<td></td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ceratophyllum demersum</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>• cfr. submersum</td>
<td></td>
</tr>
<tr>
<td>Chenopodium sp.</td>
<td></td>
</tr>
<tr>
<td>Cirsium lanceolatum</td>
<td></td>
</tr>
<tr>
<td>Cladium mariscus</td>
<td></td>
</tr>
<tr>
<td>Comarum palustre</td>
<td></td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td></td>
</tr>
<tr>
<td>Empetrum nigrum</td>
<td></td>
</tr>
<tr>
<td>Eriophorum sp.</td>
<td></td>
</tr>
<tr>
<td>Hippuris vulgaris</td>
<td></td>
</tr>
<tr>
<td>Hydrocharis morsus rana</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Myriophyllum spicatum</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Najas marina</td>
<td></td>
</tr>
<tr>
<td>Rav-Pindelag</td>
<td>Rubehaven</td>
<td>Gåvebølstrand</td>
<td>Førhavnen</td>
<td>Otterup</td>
<td>Tjørnegaard</td>
<td>Espérgårde</td>
<td>Nizza</td>
<td>Lønstrup</td>
<td>Hovberg</td>
<td>Hven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oenanthe phellandrium</td>
<td></td>
</tr>
<tr>
<td>Oxalis acetosella</td>
<td></td>
</tr>
<tr>
<td>Potamogeton coloratus</td>
<td></td>
</tr>
<tr>
<td>  crispus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>  filiformis</td>
<td></td>
</tr>
<tr>
<td>  Friesii</td>
<td></td>
</tr>
<tr>
<td>  gramineus</td>
<td></td>
</tr>
<tr>
<td>  lucens</td>
<td></td>
</tr>
<tr>
<td>  natans</td>
<td></td>
</tr>
<tr>
<td>  obtusifolius</td>
<td></td>
</tr>
<tr>
<td>  pectinatus</td>
<td></td>
</tr>
<tr>
<td>  perfoliatus</td>
<td></td>
</tr>
<tr>
<td>  polygonifolius</td>
<td></td>
</tr>
<tr>
<td>  praelongus</td>
<td></td>
</tr>
<tr>
<td>  pusillus</td>
<td></td>
</tr>
<tr>
<td>  rufescens</td>
<td></td>
</tr>
<tr>
<td>  trichoides</td>
<td></td>
</tr>
<tr>
<td>  spp.</td>
<td></td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td></td>
</tr>
<tr>
<td>Quercus sp.</td>
<td></td>
</tr>
<tr>
<td>Ranunculus cfr. flammula</td>
<td></td>
</tr>
<tr>
<td>  repens</td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td></td>
</tr>
<tr>
<td>Rumex sp.</td>
<td></td>
</tr>
<tr>
<td>Ruppia maritima</td>
<td></td>
</tr>
<tr>
<td>Sambucus sp.</td>
<td></td>
</tr>
<tr>
<td>Scirpus lacustris</td>
<td></td>
</tr>
<tr>
<td>  Tabernamontiani</td>
<td></td>
</tr>
<tr>
<td>Sparganium ramosum</td>
<td></td>
</tr>
<tr>
<td>  spp.</td>
<td></td>
</tr>
<tr>
<td>Stratiotes aloides med f. intermedia m.</td>
<td></td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td></td>
</tr>
<tr>
<td>Viola cfr. palustris</td>
<td></td>
</tr>
<tr>
<td>Zannichellia palustris</td>
<td></td>
</tr>
</tbody>
</table>
Bemærkninger om en Del Arter.

En Del Fro og Frugter mener jeg at måtte opfatte som tertiære, da jeg kan identificere dem med tidligere kendte tertiære Arter; andre anser jeg for tertiære, fordi de er forkullete og i det hele har et ældre Præg. Foruden disse Arter, ialt 13, omtales her tillige nogle diluviale Arter.

Pinus cfr. Hageni Heer.

Tavle V, Fig. 7.

I Materialet fra Udgravningerne i Kalvebodstrand forekom et Fragment af en Fyrrekøgle. Det er 3,2 cm. langt, c. 2 cm. tykt, cylindrisk, kun lidt fladtrykt; det er stærkt rullet og kun paa enkelte Kogleskæl er den rhombiske Apofyse med lidet fremtrædendeumbo bevaret.

Denne Kogle minder meget om *Pinus Hageni Heer* (1869) fra Samland: *Pinus strobilis ovato-oblongis ovatisve, squamarum apophysiplana, rhombea vel 5—6 gona, lævigata, umbone deplanato.*

Brasenia purpurea Michx.

Blandt de talrige Eksemplarer af Fro af denne Art fra Rav-Pindelagene findes en Del, der er forkullete, glinsende sorte og betydeligt mindre end sædvanligt. Af den Grund anser jeg dem for tertiære, og de er opført i Listen under Rubriken: tertiære Arter. Enkelte Eksemplarer er knap 2 mm. lange, medens de typiske er 3,5—4 mm. lange; GUNNAR ANDERSSON (1896) har allerede gjort opmærksom paa, at Froene af *Brasenia purpurea* varierer meget betydeligt i Størrelse.

Carpolithes Dalgasii m.

Denne Art er allerede beskrevet under Brunkulsplanterne, Side 58.

Carpolithes Hafniensis m.

Tavle V, Fig. 6 a—c.

En Carpolith af uregelmæssig Tæringiform, 6—7 mm. i Tværsnit. Den ene Flade (Basis?) viser en tydelig Fordybning eller Grube (Fig. 6 c), den modestaaende Flade (Fig. 6 b) er hvælvet, lysere end Carpolithens andre Flader og viser to svage Antydninger af flade Gruber. Hver af de fire øvrige Flader har en kedelformet Fordybning, der er (eller har været) udfyldt af et skiveformet, indadtil
hvælvet, udadtil fladt og jævnt Legeme, paa hvis Inderside atter ses 3—4 smaa Fordybninger.

Skæres Carpolithen igennem, ses Basis(?)-Gruben at udvide sig i Carpolithens Indre til et større Hulrum (c. 3 mm.); de 4 skiveformede Legemer ligger i flade Fordybninger, der har en mørk, haard Begrænsning mod Carpolithens bløde Indre, der er dannet af et løst Parenkymvæv.

Denne Carpolith, hvis Form er ret vanskelig at beskrive og hvis Form ogsaa er noget variabel, er mig ganske gaadefuld.

Ialt kender jeg 4 Eksemplarer af denne mærkelige Carpolith, et fra Ordrup (afbildet), to fra Valby Bakke og et fra Lønstrup Klint.

Carpolithes Johnstrupii m.

Tavle IV, Fig. 18—21.

Denne Art er beskrevet under Brunkulplanterne, Side 58.

Carpolithes le Mairii m.

Tavle IV, Fig. 16.

En glinsende sort, ægdannet Carpolith; i den ovre Ende er den tilspidset, i den nedre lige afskaaret og i denne Ende forsynet med et Hul. Dens Overflade er grubet; ved Basis er Gruberne aflange, i den overste Del omtrent kredsrunde.

Carpolithes Ordrupensis m.

Tavle IV, Fig. 4.

En sort, forkullet, fladtrykt, tykvægget, bredt ægdannet Carpolith (Frugtsten?, noget mindende om *Prunus*), 5 mm. lang, største Brede 4 mm.; Yderfladen vortet-rynket, glinsende. Kun et Eksemplar kendt, fra Ordrup.

Carpolithes Rosenkjærii m.

Tavle IV, Fig. 11—15.

En sort, forkullet, kugleformet, trerummet Carpolith, hvis ene Rum aabner sig med en Klap; denne losner sig foroven, men forbliver fæstet ved Carpolithens Basis. I begge Poler ses en lille Fordybing.

Størrelsen er 1,6—3 mm. i Diam.; Væggene er tykke, Yder- og Skillevægge omtrent lige tykke; paa et Tvaersnit (Fig. 13) ses et lille Hulrum, der, hvor de tre Skillevægge stoder sammen i Carpolithens Midtakse.

Medens de fleste Eksemplarer af denne mærkelige Carpolith (jeg har set over 100 Eksemplarer) er trerummede og enklappede, har
jeg fundet nogle enkelte, der er firrummede og toklappede (Fig. 14 og 15). Paa en Del af Materialet er Klappen brækket af, altid med en ujævn Brudflade forneden, hvilket viser, at det ikke er normalt, at Klappen falder helt af. Paa de fleste Eksemplarer sidder Klappen fast og gaber kun lidt.

Denne Carpoliths systematiske Stilling er foreløbig ganske gnådefuld; jeg kender fra Nutiden intet tilsvarende, har heller ikke i den mig tilgængelige Litteratur fundet den omtalt eller afbildet.

Carpolithes Steenstrupii m.

Tavle IV. Fig. 22—23.

En sort, forkullet, tykvaegget Carpolith, fladtrykt, ægdannet (snart bredt-, snart aflangt-ægdannet) med to ejendommelige „Ører“ i den brede Ende.

Carpolithen spaltes let i to Halvdele; ved Aabningen af et Eksemplar fandtes Rester af Froskallen (?) inde i det pæreformede Hulrum.

Carpolithes Ostrupii m.

Tavle IV. Fig. 25—26.

En sort, tendanned Carpolith med Hul i begge Ender, med lave Ribber løbende fra Pol til Pol.

Det kortere Næb paa Fig. 25 skyldes vistnok en Beskadigelse.

Elæocarpus globulus P. Menz.

Tavle V. Fig. 1—5.

Sorte, forkullede Carpolither af Form som Kugleudsnit, med bred, glat eller svagt nubret Rygflade og to plane eller svagt indentationerede Sider, der stoder sammen i „Buglinjen“.

Indvendig i disse Carpolither findes intet Hulrum; Carpolithen har helt igennem en ejendommelig, smaablærel Struktur. Størrelsen varierer fra 3,5—8,5 mm. Længde og tilsvarende Bredde.

Medens saadanenne som Kugleudsnit formede Carpolither er meget almindelige i Rav-Pindelagene, er det en stor Sjældenhed at træffe flere Kugleudsnit i Sammenhæng; ROSENGENDE's Fundberetninger, der omtaler disse Carpolither under Navn af „forkullede Kærner“, navner dog paa flere Steder, at de oprindelig hang sammen, men ved Præparationen faldt fra hinanden. I det af mig gennemgaaede Materiale findes i ét Tilfælde 3 Kugleudsnit forenede til en Halvkugle, der i den ene Ende viser en svag Fordybning, omgivet af en lav, ringformed Vold; i Materialet fra Valby Bakke fandtes endelig den i Fig. 2 afbildede, kugledannede Carpolith, dannet af 6 sammenhængende Stykker; et Tværsnit viser 6 smalle Rum, hvori ses Rester
af Frøskallen; ogsaa i Materialet fra Itzehoe fandtes en saadan hel, seksrummet Carpolith.

Ved et Besøg i 1898 i Victoria-Gruben ved Senftenberg (Niederlausitz) fandt jeg den samme Carpolith (Fig. 1).

Elaeocaropus er en til Tiliaceæ horende Slægt, der i Nutiden lever i det tropiske Asien, Australien, Stillehavsoerne og Japan.

Stratiotes Kaltenmordhemensis (Zenk.).

Folliculites Websteri aut.

Tavle IV. Fig. 1—2 og 7—8.

Dette af Zenker (1833) under Navn af Folliculites Kaltenmordhemensis forst afbildede og senere under forskellige Navne fra forskellige tertiære Lokaliteter omtalte og afbildede Fro har ved Keilhack's lykkelige Fund (1896) af recente Stratiotes-Fro vist sig at være en Stratiotes-Art, nær beslægtet med Stratiotes aloides.

Vitis tentonica A. Br.

Tavle IV, Fig. 17.

Frøet af denne Art blev først afbildet (uden Beskrivelse) af Alex. Braun; senere er Blade og Fro afbildede og beskrevne bl. a. af Ludvig (1859—61), som mener, at den staar den nordamerikanske Vitis cordifolia nærmest. Froene er kendte fra en Mængde Tertiær lag af forskellig Alder.

De danske Eksempler er glinsende sorte og forkullede; et Eksemplar fra Itzehoe er ganske fladtrykt.

Pinus silvestris.

Tavle V, Fig. 8—13.

Af denne Art er der paa enkelte Lokaliteter fundet talrige Kogler og „Kogletene“, alle mere eller mindre rullede; de mest medtagne.
Eksemplar er saa ødelagte, at det næppe havde været muligt at bestemme dem, hvis der ikke havde foreligget en hel Række Formør paa forskellige Studier af Ødelæggelse; disse Kogler er allerede omtalte af SARBÜW (1897, S. 40).

Ceratophyllum demersum.

En ejendommelig Misdannelse med et Par store Knuder paa Frugtens Sider er afbildet paa Tavle IV, Fig. 27.

Potentilla anserina.

Tavle IV. Fig. 24.

Denne Art er hidtil kun kendt fossil fra Rav-Pindelag.

Sambucus sp.

Paa Tavle IV, Fig. 28 har jeg afbildet en velbevaret Frugtsten tillørende denne Slægt og fundet i Bovbjerg. Jeg har dog ikke med Sikkerhed kunnet afgøre, om den skal henfores til S. nigra eller muligvis en anden Art; ganske lignende Frugtstene af *Sambucus* er fundne i Valby Bakke, ved Nivaa og Lonstrup.

Sparganium ranosum.

Tavle V. Fig. 14—16.

Frugtstene af denne Art er meget almindelige i saa godt som alle Rav-Pindelag. Paa Tavlen er afbildet tre forskellige Eksemplarer, der viser en ejendommelig Sammenvoksning af to, tre og fire Frugtstene.

Stratiotes aloides.

Paradoxocarpus carinatus NEHRING.

Folliculites carinatus Potonié.

Tavle IV. Fig. 3—4.

De i Rav-Pindelagene optredende Frø af *Stratiotes aloides* har — med enkelte Undtagelser — alle en mere knudret Overflade end den typiske interglaciale og nulevende Form. Knuderne er ordnede i nogle faa Længderækker. Heri afviger de tydeligt fra de langt mere knudeformede Frø af *St. Kaltennordhemensis*, hvis Knuder er ordnede i talrige Længderækker. Frøets Form er ogsaa noget mere langstrakt end hos *St. Kaltennordhemensis*, uden dog at nåa den Slankhed, som kan findes hos den interglaciale Form. Da de omtalte Frø fra Rav-Pindelagene saaledes forekommer mig at være en Mellemform mellem disse to Yderformer, kalder jeg dem *Stratiotes aloides* f. *intermedia*.

Denne Form har jeg ligeledes fundet i det af H. MENZEL (1906, S. 623) omtalte præglaciale Lag ved Eime i Hannover, og den synes
efter Bemærkningerne hos Potonié (1892, S. 207 og 1893, S. 97) også at være kendt fra Cromer forest bed. Den Form, som forekommer i Gytjen i den interglaciale Mose ved Klinge, synes i det store og hele at afvige deri, at de i Række stillede Knuder er lavere og mere sammenflydende, hvorved Froet faar et glattere Udseende. I Sammenhæng hermed maa fremhæves Nøhring’s Paavisning af, at Frøene i de nedre Lag (Gytjen) ved Klinge synes at være kortere og mere ru end Frøene i den overliggende Torv (Potonié: 1892, S. 207).

Det synes, som om vi i de fossile Fro har en smuk Udviklingsrække: hos den tertiære Form (Stratiotes Kallennordhemensis) er Frøene korte og stærkt skulpterede; Froene fra de præglaciale Forekomster Cromer forest bed og Eime er, ligesom Flertallet af Froene i Rav-Pindelagene, lidt længere og mindre stærkt skulpterede; endelig er Froene fra de interglaciale Moser ved Brørup betydelig slankere og glatte. Froene fra Klinge danner smukke Overgangsled. Som allerede Potonié har udtalt, har vi sikkert her en Formrække, hvis enkelte Led er knyttede til bestemte Tidsafsnit, og alene disse tre Formers Forekomst i ét og samme Rav-Pindelag viser dettes Oprindelse fra Lag af meget forskelligt Alder.

Ejendommeligt nok har i hvert Fald nogle af de i Ordrups Rav-Pindelag fundne Biller (se S. 128) en nordlig Udbredelse; i de danske Rav-Pindelag er der ikke fundet Planterester med tilsvarende Præg. I 1906 fandt imidlertid, som ovenfor nævnt S. 111, Statsgeolog, Dr. N. O. Holst i Skaane, paa Kortbladet Borringe Kloster, et Rav-Pindelag, hvis Planterester han overlod mig til Bestemmelse; i dette fandtes enkelte Polarplanter:

Betula nana, 1 Blad.
Salix polaris, 1/2 Blad, samt
Cenococcum geophilum.
Mosser.
Picea excelsa.
Alnus glutinosa.
Batrachium sp.
Brasenia purpurea.
Carex sp.

Ceratophyllum demersum.
Hippuris vulgaris.
Menyanthes trifoliata.
Najas marina.
Polamogeton spp.
Potentilla anserina.
Sparganium ramosum.
Stratiotes aloides.
Zannichellia palustris.
Rav-Pindelagenes Fauna.

At disse Lag indeholder en Mængde Foraminiferer omtales af Rosenkjer 1898 og Jessen 1899; disse Skaller er dog endnu ikke bestemte. Af Arthropoder findes ret talrige Vingedækker af Biller; de fleste af disse er endnu ikke bestemte; blandt „Johnstrup's Forarbejder“ findes følgende Udtalelse fra Dr. H. J. Hansen, dateret Juni 1892, om Arthropoder fra Ordrup-Laget:

Af Lødebiller findes mindst 6 Arter, de fleste horende til Slægten Pterostichus, men alle i for smaa Stumper til at bestemmes, særlig da Museets Samlinger af europæiske Biller og i dette Tilfælde arktiske Arter og af Bjergformer fra Tydskland og Schweiz er altfor defekt til en saadan Undersøgelse.“

Rav-Pindelagenes Alder.

Alle de Forfattere, der overhovedet har beskæftiget sig med Rav-Pindelagene, har udtalt sig paa temmelig forskellig Maade om disse Lags Alder.

Johnstrup (1892, S. 434) indskrænker sig til den Bemærkning, at disse Fund ikke kan tages „til Indtægt for de nyere Theorier om en eller endog flere interglaciale Perioder, saalænge man ikke med Sikkerhed har kunnet paaevise saadanne i Danmark.”

Rosenkjær erklærer kategorisk (1893, S. 24): „De (Frøene) ere blevne indlejrede i Sandblokkene i Tertiærtiden og førte hertil i den første Istid.” Nogle af de paa Hven fundne Sandaflejringer med Rav-Pindelag opfattede han (1896, og 1898) som faststaaende; herom kan man dog næppe udtale sig med Sikkerhed, saalænge Lejringsforholdene i det hele ikke er bedre kendte. Plantelevningerne synes imidlertid at være ligesaa stærkt rullede som i andre Rav-Pindelag, saa Planterne befinder sig sandsynligvis ogsaa her paa sekundært Leje i Sandet.

Gunnar Andersson (1895) er mest tilhøjelig til at opfatte Plante materialet i Rav-Pindelaget som interglacialt, om han end ikke anser det for udelukket, at en fra Nordtyskland kommende Flod, der har eroderet en præglacial Tørvemose, har aflejret Sandet med dets fossilforende Lag i sine Deltadannelser.

Sarauw (1897) sammenstiller „Skovlaget” i Frihavnen med „Cromerskovlaget” i England og mener at finde Overensstemmelse i disse to Dannelsers Planteindhold. Men medens saavel Cromerlagets Plante samfund som selve Lagets Aflejring tilhorer den plicocene Tid, maa man ved Skovlaget i Frihavnen erindre, at de efter Sarauw’s Mening plicocene Plantelevninger her er indlejrede i „lag, der tilhøre istiden, hvilke vel er istidens ældste paa stedet, men yngre end flere andre led af samme i vort land.”

Hertil er at bemærke, at Sarauw ved „Skovlaget” forstaar saavel Rav-Pindelagene som de planteførende Gytje- og Lerblokke, der lige som Sandblokkene ligger indesluttede i den nederste Moræne. Men det er ganske uberettiget at slaa disse forskellige Dannels ser sammen. Sandblokkene med Rav-Pindelagene i Frihavnen kan — lige saa vel som de andet Sted fra kendte Rav-Pindelag — meget godt være glacialde Dannels er, idet Planteresterne kan være udvaskede af de af Isen forstyrrede og i Morænedannelserne indlejrede Lag og atter aflejrede i Smelt evandssandet. Gytjeblokkene derimod maa dels paa Grund af de gennemgaaende velbevarede Plante- og Dyrelevninger,

Hvad nu Sammenstillingen med Cromerlaget angaar, saa var den, i det mindste da Særauw skrev sin Afhandling, efter min Mening ganske uberettigt — selv om det maas indrommes, at A. C. Johan sen's Fund (1904) af Corbícula fluminális og Písidium astrolóides i Gytjeblokkene i Frihavnen synes at give Særauw Ret for Gytjeblokkenes Vedkommende.

Det er jo nemlig dristigt, naar man selv siger (Særauw, S. 29), at det alene er Knoglerne af de uddøde Dyr, der kan berettige Cromer Skovlagets Henførelse til den yngre pliocene Tid, medens Floraen har samme Karakter som den pleistocene eller interglaciale — da at henfore Læg, fra hvilke man ingen pliocene Dyrerester kender, og hvis Flora er en yderst almindelig „pleistocen eller interglacial“, til Pliocen.

Jessen betragtede i 1899 de i Vendsyssel (Lonstrup Klint) fore-kommende „Ravlag“ som afsatte af Gletscherelve under Afsmeltningen af den store, norske Indlandsis (Geikie's Saxonian).

Ussing udtaler sig (1904, S. 211—12) paa følgende Maade om Rav-Pindelagenes Alder og Oprindelse: „De Sandmasser, som indeholde Rav- og Pindelagene, danne store isolerede Flager eller lose Blokke i Moræneaflejringerne; intetsteds synes de at være iagttagne paa deres oprindelige Lejested. Man har formodet, — og meget taler for denne Formodnings Rigtighed —, at Rav- og Pindelagene blev sammenskyldede paa et Tidspunkt, før Isen udbredte sig over Landet, og medens Østersøen kun eksisterede som en stor Lavning; mægtige Floder fra denne Lavning og fra Nabolandene kunde da transportere baade Sandet og Ravet og de øvrige Plantelevninger ud over Danmark. Senere blev de afsatte Lav ved Ismassernes Paaevirkning delvis odelagte og indskrænkede til de nuværende Rester.

Ifølge den nævnte Formodning vilde Rav- og Pindelagene aaledes høre til de præglaciale Dannelser, men det drejer sig her kun om en Formodning, og den Mulighed er ikke udelukket, at Lagene kunne være sammenskyldede i interglacial Tid.“

 Til Ussing's Udtalelser kan jeg ganske slutte mig, idet jeg dog endnu engang finder Anledning til at fremhæve, — hvad allerede Gunner Andersso n og Særauw har bemærket, — at der maas skelnes skarpt mellem Planteresternes Alder og Alderen af det Sand, hvori de nu findes paa sekundært Leje, samt at det ingenlunde er givet,
at alle Rav-Pindelag er af samme Alder, selv om deres floristiske Præg er ens.

Det bor til Slut fremhæves, at Rav-Pindelagene kan have et lokalt Præg; medens saaledes Rav-Pindelagene paa Sjælland foruden tertiært Brunkul indeholder talrige Stumper af Jurakul, indeholder Materialet fra Bovbjerg vist nok ingen Jurakul men talrige tertiære Brunkul, og Materialet fra Lonstrup bestaar saa godt som udelukkende af diluviale Planter.

Fossilforende Gytje- og Leerflejringer.

Under denne Betegnelse samler jeg nogle Aflejringer, som enten ved deres Fauna eller ved deres Beliggenhed rober, at deres Dannelsestid falder langt tilbage i Kvartærtiden, uden at Tidspunktet for Ojeblikket kan angives nærmere. Disse Dannelser afviger fra Rav-Pindelagene heri, at Fosilerne ligger paa primært Leje i Lagene; selve Aflejringerne ligger derimod, muligvis med en enkelt Undtagelse, paa sekundært Leje.

Gytjeblokke i den nedre Moræne i Københavns Frihavn.

\(^1\) Forord til Rosenkłer: Fra Frihavens Bund (1896).
\(^3\) Ligesom Sandblokkene, der af Rosenkłer henføres til Tertiærtiden (jfr: S. 129).
i den ene Udstrækning, 35—36 Fod (12 m.) i den anden og indtil godt 9 Fod (3 m.) tyk. Den lær fuldt indesluttet i Moræneleret, og i den sydøstlige Side var der trykket en meget stor Bullesten ind i Blokken. Baade Dynd- og Sandblokkene ere vist i frossen Tilstand revne lose fra deres Dannelsessted. Dog ere de næppe førte langt under Isen, da de dog vist saa vilde være helt knuste.

Sarauw gør (1897, S. 19) efter Meddelelse fra V. Hintze opmærksom paa, at der kunde „skelnes mellem to horizonter af forsteningsførende ferskvands-lørlag [skal være Gytjetag], der indesluttede træevninger: en øvre, der øjensynlig var optagen i og sammenhældet med morænen, og en nedre, der ikke viste noget indhold af morænenesten."

Om de Dyr og Planter, Gytjen indeholder, findes, foruden det ovenfor anførte, følgende Oplysninger i Litteraturen:

Rosenkjer tilfojer (1896, S. 276):

Egetræ (bestemt af G. Sarauw) samt Fro og Frugter af følgende Arter, bestemte af O. Rostrup:

Pinus silvestris, Koglekæl.
Ajuga reptans [Rubus idæus].
Carex sp.
Cirsium sp.
Cornus [suecica, Skrivefejl for] sanguinea.
Corylus aveliana, en Nød.
Eriophorum sp.
Potamogeton sp.
Scirpus sp.

Af Dyr anføres: Det stribede Hus af vor almindelige Havesnegl og en Mængde Sneglehuse og Muslingeskaller, alle knuste.

Af de i O. Rostrup’s Fortegnelse (1895, jfr. ovenfor S. 114) opførte Arter mærkes særlig Limnanthemum nymphaeoides; det er første Gang, den er fundet fossil.

Sarauw (1897) opfører, efter Ad. Jensen’s Bestemmelser, en Del Mollusker og som Resultat af egne Undersøgelser:

Cupressinoxylon, „et fladt, haardt, tungt vedstykke, sort med silkeagtig glans som brunkul."

Quercus sp., 4 fladtrykte Stykker Ved af en Egcart, der maaske er beslaglet med Quercus subgarryana Casp., „men ikke selve denne.“ Et Stykke Egvej var høret af en Larve (Træbuk?)

Corylus sp., en halv, fladtrykt Hasselnød med dybe Furer i Skallen, hvorfor Sarauw sammenstiller den med C. avellanoides Engell. fra Sachsens nedre-oligocene Lag og C. Goeperti Ung. fra Samland.

Fra Rosenkjær og Museuminspektør V. Hintze har jeg modtaget et meget betydeligt Materiale af Gytje fra de omtalte Blokke; Resultatet af min Undersøgelse af dette Materiale samt af Rosenkjær's udslæmmede Samlinger fra Gytjeblokken er — sammen med Litteraturens ældre Angivelser — opført i nedenstående Fortegnelse.

Gytjen er i Reglen lidt kalkholdig og har undertiden Karakter af en ren Kalkgytje eller Ferskvandskalk; Hr. Cand. polyt. Alf Stage foretog på min Anmodning i 1904 en Glødnings-Analyse af en Prove, der indeholdt 5% CaCO₃; Provens Glødetab var 29,4°₀.

Planter:

Tertiære Arter.

* Cupressinoxylon, Ved (Sarauw).
* Quercus aff. subgarryana, Ved (Sarauw).

Diluviale Arter.

* Chara sp.
* Phacotus lenticularis (G. L.).
* Cenococcum geophilum.
* Amblystegium fluitans, f. submersa.
* giganteum.
* L astræa thelypleris, Sporer (G. L.).
* Picea excelsa, 4 Naale.
* Pinus silvestris, Kogleskæl (Rosenkjær), Pollen (G. L.)
* Alnus glutinosa.
* Batrachium sp.
* Betula alba.
* Carex sp.
* Cirsiun sp.
* Cornus sanguinea.
* Corylus avellana.
* Eriophorum sp?
* Eupatorium cannabinum.
* Hippuris vulgaris.

¹) Johansen taler stadig om »Lerblokke« med *Corbicula* etc., men mener dog aabenbart Gytjeblokke (Dyndhblokke).
Limnanthemum nymphæoides. 2 Fro, hvorfal det ene er afbillet paa Tavle XII, Fig. 25.

Nuphar luteum.
Nymphawa alba.
Potamogeton alpinus.
 - *perfoliatus.*
 - *prælongus.*
Rabus idæus.
Ruppia maritima.
Scirpus sp.
Sparganium ramosum.
 - *sp.*
Spiræa ulmaria, talrige Frugter.
Tilia sp.
Typha latifolia, Pollen (G. L.).
Viola cfr. palustris.

Dyr:

Bithynia Leachi.
 - *tentaculata.*
Clausilia sp.
Helix (Eulota) fraticum.
 - *(Vitrea) nitida.*
Limnæa pereger.
 - *stagnalis.*
Planorbis umbilicatus.
Valvata cristata.
 - *piscaerialis.*
Corbicula fluminalis.
Pisidium annicium.
 - *astartoides.*
 - *globulare.*
 - *(Fossarina) sp.*
Sphaerium corneum.

Brudstykke af en Hajtand (tertær?)

Otoliter af Fisk.
Mus sylvaticus, en Fortand.
Cetider?, Fragmenter af store Knogler.

Ekskrementer af Vandrotte? *Hypudæus amphibius).*

* Bestemte af V. Nordmann; findes ikke i A. C. Johansens Fortegnelse herfra.

Herfra fandtes ogsaa en Del tilspidsede, cylinerformede Ekskrementer, 7—11 mm. lange, 3—4 mm. i Tversnit, indeholdende talrige Sandkorn. De minder if. H. Winge mest om Ekskrementer af Vandrotte (Hypudæus amphibius), men det er maaske tvivlsomt, om de hører hjemme i Dyublokken.

At den af Sarauw (l. c. p. 23) omtalte Hasselnød skulde være tertiar, anser jeg for usandsynligt; jeg har ofte paa fossile Hasselnødder af yngre Alder, haade diluviale og postglaciale, iagttaget ligesaa dybe Furter (jfr. Tavle XIII, Fig. 20—22).

Corbicula-Laget ved Forslevgaard.

I dette Lag har jeg fundet følgende Planter:

* Cenococcum geophilum*, en lille Kugle, knap 1 mm. i Tversnit.
* Amblystegium exannulatum.*
* · riparium.*
* Hypnum Swartzii.*
* Picea excelsa?, Barkflager.*
* Alnus glutinosa*, Hunrakler og Frugter.
* Betrachium sp., 1 Frugt.*
* Betula subalpina* (L. M. N.), 1 ?-Rakleskæl.
* Nymphæa alba*, et Brudstykke af 1 Fro.
* Potamogeton lucens (?), meget fladtrykte Stene (I. P.)
* Ranunculus repens*, 1 Frugt.
* Tilia europaea*. 3 fladtrykte Kapsler.

Desuden en Del Fro, som jeg hidtil ikke har kunnet bestemme, og nogle rullede Pinde.

Paa Grundlag af V. Mithers’s Undersøgelser har Nordmann (1905, S. 112) fremhævet, at ogsaa Lejringsforholdene ved Førslevgaard taler for, at Laget ligger paa primært Leje og er præglacialt.

Planteformatende Lerblokke i den nedre Moræne i Frihavnen og Valby Bakke.

Rosenkjær meddeler (1893, S. 26), at der paa en større Strækning af Frihavnsterrænet, Ost for Middormolen, i det nedre Moræneler laa Blokke af skæmmet, blaagraat Ler, ofte i Forbindelse med gront Sand ø: Glaukonitsand, 28—30 Fod (c. 9—10 m.) under Havfladen. I dette Ler fundtes Mos og enkelte Frø af Polanviiglon og Batrachium samt Sporer af Selaginella spinosa (bestemte af O. Rostrup); disse Planter anser Rosenkjær for rimeligvis at være „Levninger af den Polarvegetation, som voksede her, da Isen i den første Istid trængte sig frem“, og han bemærker udtrykkeligt, at „det ser ikke ud til, at det her omtalte Ler og Mos har haft nogen Forbindelse med Sand- og Dyndblokkene."

1896 meddeler Rosenkjær, at Mosserne i dette Ler efter Chr. Jensen er:

Amblystegium giganteum.
 fluitans.
 scorpioides.

Lignende Blokke omtaler Rosenkjær (1898, S. 71) fra Udgravningerne i Valby Bakke.

I Leret fra disse Blokke, der som ovenfor nævnt med Urette af Sarauv slaaes sammen med Gytje- og Sandblokkene, er der fundet følgende Dyr og Planter, der alle har et arktisk Præg; Mosserne er bestemte af Hr. Chr. Jensen og Hr. A. Hesselbo.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Valby Bakke</th>
<th>Freihavnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cristatella muceda</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Daphnia pulex</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Chara sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cenococcum geophilum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblystegium brevifolium (LINDB.)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>" chrysophyllum de NOT.</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>" examulatum (GUMR.) de NOT.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" filicinum de NOT.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" fluitans (DILL.) de NOT.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" giganteum (SCHIMP.) de NOT.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" intermedium LINDB.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Kneiffl Br. C. Eur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" lycopodioideus (BRID.) de NOT.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" revolvens (SW.) de NOT.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" Richardsonii (MITTEN) LINDB.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>" Rolae de NOT.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" scorpioides (L.) LINDB.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" Sendtneri (SCHIMP.) de NOT.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>" stellatum (SCHREB.) LINDB.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>" turgescens (JENSEN) LINDB.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditrichum flexicaule (SCHLEICH.) HAMPE.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypnum trichoides NECK.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leersia sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mesaea triquetra L.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Swartzia montana (LAM.) LINDB.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Selaginella spinosa</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Batrachium cfr. confervoides</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carex sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hippuris vulgaris</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polamogoton sp.</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
Interglaciaale Aflejringen.

Jydland.

Indledende Bemærkninger.

Nu afdøde Proprietær Fritz Momsen. Skovlyst ved Brørup, bemærkede i Foraaret 1897, at der ved en Brøndgravning tæt Syd for Brørup Station blev opgrævet Torv fra den usædvanlige Dybde af c. 8 Alen (5 m.) under Jordoverfladen. Denne fagtagelse, der skulde blive af største Betydning for mig og mine Studier, kom ad forskellige Omveje til min Kundskab, kort efter at jeg var bleven ansat ved „Danmarks geologiske Undersøgelse“ med det særlige Formaal at studere vor Floras Historie.

Forst i August 1898 kom jeg — efter i Mellemtiden at have besøgt en Del af de nordtyske Findesteder for den interglaciaale Flora
— til Brørup; i et Brev af 23. Juli 1898 fik jeg af Hr. Momsen den yderligere Oplysning, at han ved Brondgravning paa sin Mark ved Skovlyst for længere Tid siden (vistnok for 30—40 Aar siden) havde fundet en Mose 3—4 Alen (2—2\(\frac{1}{2}\) m.) under Jordoverfladen; Torven havde gjort Vandet saa ubrugelig, at Hullet blev tilkastet.

I de følgende Aar anvendte jeg en Del af Sommeren til Undersøgelse af disse „underjordiske“ Moser i Brørup-Egnen; ved at spørge mig for kom jeg efterhaanden til Kundskab om talrige saadanne Moser, og det viste sig snart, at de var et paa denne Egn velkendt Fænomen, der ofte var iagttaget ved Brondgravning. Efterhaanden lærte jeg ogsaa selv, ved Studiet af Terrænformerne, at kunne se, hvor der er Sandsynlighed for at finde en interglacial Mose under Sandet.

Torven er nemlig i Tidens Løb bleven stærkt komprimeret under Vægten af de overliggende diluviale Lag, hvorved der er fremkommet en flad, skaalformet Fordybning i Terrænet over det interglaciale Mosebassin. I denne Egn, hvor det ofte er forbundet med betydelige Vanskeligheder at faa Vand, har Erfaringen forlængst lært Befolkningen at soge til disse Fordybninger for at grave Bronde. Vandet, der faaes under Torven, bliver hurtig klart og godt, selv om det i de første Maaneder er brunt og ildelugtende („svovlet“).

Den almindelige Opfattelse paa Egnen af disse Forhold er den (som ogsaa udtales i Hr. Momsens ovenfor citerede Brev), at Sandet over Torven er Flyvesand; denne Opfattelse støttes deraf, at der faktisk paa flere Steder i Egnen forekommer yngre, postglaciale Torvelag, dækkede af Flyvesand.

Mose i Brorup Stationsby.

Fig. 13. Kort over Brorup og Tuesbøl.
Udsnit af Generalstabens Maalebordsblad Holsted Nr. 3406.1: 20.000;
Kurvernes Equidistance 5' = 1,57 m.
× 1 Mose i Brorup Stationsby,
× 2 Mose paa Vejen fra Brorup til Tuesbøl (S. 190).
× 3 Mose paa Tuesbøl Mark (S. 160).

416 m. Syd for Jærnbanelinjen, et Par Skridt Vest for Landevejen fra Brorup til Foldingbro (1 m. Sydvest for den Brond, hvori Hr. Momsen i 1897 havde iagttaget Torven) lod jeg i Sommeren 1898 grave en Brond, der fortes ned til 9 m. Dybde under Overfladen;
Brøden måalte, som alle de andre Brønde, jeg lod grave i denne Egn. c. 1,3 m. i Diameter; dens Plads er paa Kortet Fig. 15 mærket med et Kryds og 1.

I Brøden saas dette Profil:

0,6 m. Fyld.
5,0 - Sand med enkelte Sten.
0,3 - humost, leret Sand, „Overgangslag“.
2,0 - Torv.
0,6 - Gytje.
0,5 - Ferskvandssand, vandforende, til ubestemt Dybde.
9,0 m.

Fylden var paakort for at udjævne den Lavning, der her som altid ligger over de interglaciale Moser i denne Egn; Landevejen er lagt hen over den, og Opfyldninger til de i de senere Aar byggede Huse langs Landevejen har jævnet Lavningen og til Dels udvisket dens oprindelige Omrids, der dog tydeligt kan skimtes.

Sandet under Fylden var hvidgraat, næsten stenfriet og utydeligt lagdelt med nogle rustfarvede Strifer; det var ganske ensartet gennem hele Profillet.

Gytjen var fast, brunsort eller kulsort; i torret Tilstand var den haard, næsten hornagtig eller brunkullignende og spalte i papirslynde Lameller.

Den opgravede Torvemasse deltes i 10 Prover efter Dybden; i alt samlede 13 store Pakkasser fulde af Torv og Gytje fra denne ene Brond (i alt i jordfugtig Tilstand 390 kg.). Den største Del af dette vældige Materiale slæmmedes efter Gunnar Andersson’s Methode (efter Salpetersyre-Behandling); en Del undersøgtes i fugtig eller torret Tilstand uden Syrebehandling; den ikke hjembragte Del af Torven gennempiddles paa Stedet. Torven lader sig let spalte i tynde Lameller, paa hvis Overflade de forskellige Dyre- og Planterester ofte
træde smukt og tydeligt frem. De øvre Lag af Torven var ofte ud-præget foldede.

I Mosen kunde sondres 5 vel adskilte Lag, nemlig:

1. 0—10 cm. under Torvens Overflade.
 Formuldet Sphagnumtorv, dog mindre jordagtig end I.
 Cenococcum geophilum, enkelte Kugler.
 Picea excelsa, en enkelt forkullet Naal.
 Betula alba, talrige Barkstykker.
 Carpinus betulus, en enkelt forkullet Nød.

 Avnboge-Noddan har meget smaa Dimensioner; Længden er 4 mm., største Bredde 3,5 mm., største Tykkelse 2 mm.; den er sort og, hvor der er gaaet Hul paa Overfladen, glinsende; set under en Lupe viser Frugtskallen sig dannet af smaa, runde Blærer, c. 0,1 mm. i Tværsnit.

II. 10—25 cm. under Torvens Overflade

Formuldet Sphagnumtorv, dog mindre jordagtig end I.
Picea excelsa, enkelt forfaldet Naal.

Avnboge-Noddan har meget smaa Dimensioner; Længden er 4 mm., største Bredde 3,5 mm., største Tykkelse 2 mm.; den er sort og, hvor der er gaaet Hul paa Overfladen, glinsende; set under en Lupe viser Frugtskallen sig dannet af smaa, runde Blærer, c. 0,1 mm. i Tværsnit.

III. 25—35 cm. under Torvens Overflade.

De øverste cm. af dette Torvelag var endnu lidt formuldede, ellers var Laget uformuldet Sphagnumtorv.

Dyr: Oligochæt-Kapsler.

Ekskrementer af Mus (*Mus sylvaticus*)
Ekskrementer af Cervide (*Cervus dama*), Tavle VI, Fig. 7—10.
Planter: *Genococcum geophilum*, en enkelt Kugle af anselig Størrelse, 2,5 mm. i Tværsnit.

Polypichum commune, store, smukke, bladbærrende Eksempler, 7—8 cm. lange; de fleste Stængler er dog bladlose, stærkt glinsende, brune.

Osmunda regalis, Rhizomer.

Picea excelsa, Kogleskæl, Naale, Fro og Bark.

Alnus glutinosa, enkeltte Frugter.

Betula nana, $-$ Rakleskæl, Frugter, Hanrakler.

--- SUBALPINA, Bladbasis med Stilk, Frugter og Rakleskæl (L. M. N.).

Carpinus betulus, talrige Frugter.

Eriophorum vaginatum, talrige Bladrester.

Quercus sp., Bark med Insektgange.

Rhamnus frangula, 7 Fro. Exskremterne. Nogle af disse er smaa, cylinderformede, rette, 4 mm. lange, 2 mm. brede, nærmest lignende Muse-Ekskrementer, i hvert Fald af en lille Gnaver (mange Hasselnodder i de dybere liggende Torvelag er gnavede af Skovmennes). Andre Ekskrementer er betydeligt større (f. Eks. 15 mm. lange, 8 mm. brede, 2 mm. tykke), fladtrykte, ovale eller bredt ægdannede; ofte ender de i en tydelig Spids, således som man ofte ser det paa Hjørte-Ekskrementer; muligvis hidrøre de fra Daadyr, hvoraf ingen Knogler er fundne i vores interglaciale Moser, men baade i Gytjen ved Ejstrup og i Diatoméjorden ved Hollerup (jfr. nedenfor).

Osmunda regalis: meget destruerede Rhizomer; hovedsagelig er kun de lange (3—5 cm.), krumme, sylformede, sorte Karstræng-Bundler bevarede; undertiden ligger de helt isolerede i Torven, oftest samlede in situ (Tavle VI, Fig. 2). De stærkt medtagne, fladtrykte Rhizomer af *Osmunda* er karakteristiske for dette Torvelag; i de dybvere Torvelag er Kongebregne-Rhizomerne i Reglen bedre bevarede og har dør oftest endnu deres cylindriske Form.

Picea excelsa: En Del løsrenve, ret ådelagte Kogleskæl, talrige smaa Naale (5—9 mm. lange), et Par Fro og en lille Kvist med meget tynde, fine Naale, aabenbart af en ganske ung Plante eller en Skyggeform; desuden talrige Rodder med lange, let afvaldende, baandformede Barkskæl („Steinkorkfetzen”) og enkelte Grenstykker, indtil 2 cm. i Tværsnit.

Betula. Af denne Slægt fandtes talrige, vingede og vingelose Frugter og Hanrakleskæl samt to smaa Hanrakler; Hanraklerne
svarer i Form og Størrelse til *B. nana*, hvortil også enkelte af Hun-rakleskællene vist nok måa henfores; de øvrige er dels smaa Skæl af *B. subalpina*, dels (de fleste) Mellemformer mellem de to nævnte Arter.

Af Birk findes desuden en Del Barkstykker og nogle ret vel bevarede Blade, som Hr. Rektor, Dr. L. M. NEUMAN, Ystad, velvilligst har bestemt som *Betula nana*-Hybrider og *B. subalpina*.

De af Dr. NEUMANN udførte Bestemmelser af Birk er her og i det følgende mærkede med L. M. N. i et Brev til mig skriver Dr. NEUMAN: „At beståmmen subalpina bjørkexemplar i herbarier åar svart, erhuru man har tillæg lill grenar, blad og mogna ?-hæng; svarer år de naturligtvis at beståmma enslaka fjäll, frukter och bladrester. På grund häraf finnes mycket i Eder sändning, som jag icke kunnat identifera med nu lefvande björkar."

Betula-Rester, som jeg icke har kunnet henfore til nogen bestemt Art, belegnes her og andetsteds i denne Afhandling som *B. alba*.

IV. 35—70 cm. under Torvens Overflade.

Uformuldet, frisk Sphagnumtørv.

Cenococcum geophilum.

Rosellinia sp., almindelig paa Birkebark.

Polytrichum commune.

Osmunda regalis.

Acer sp., enkelte Fro.

Alnus glutinosa, Frugter.

Betula nana, Frugter (L. M. N.).

— *subalpina*, talrige ?-Rakleskæl (L. M. N.), Grene.

Enodion coeruleum, Stængelled.

Eriophorum vaginatum, talrige Bladrester.

Osmunda: Et velbevaret, men lille Rhizom (10 cm. langt, 3 cm. bredt) og talrige sorte, haandformede Rødder (2 mm. brede), der gennemvæver Torven, udgaaende fra Bladfæstnerne paa Rhizomet. Desuden to mere medtagne Rhizomer af omtrent samme Størrelse.

Picea forekommer i Mængde, især i den nederste Del af dette Lag; Torven er her ofte ganske opfyldt af Grannaale; tynde, hvibarkede Grene af Birk findes i Mængde sammen med Granresterne.

Endelig forekommer enkelte, knoldformede opsvulmede Stængelled af Enodium coeruleum (se under V).

V. 70—100 cm. under Torvens Overflade.

Uformuldet, sammenpresset Sphagnumtorv med tydelig Mosstruktur.

Dyr: Donacia sp., Vignedækker.
 Puppehylster af ?

Planter: Cenococcum geophilum, store Peridier, indtil 4 mm. i Tværsnit.
 Rosellinia sp., paa Birkebark.
 Hypnum purum.
 Polytrichum commune, talrige Stængler.
 Lastrea thelypteris, Rhizomer.
 Osmunda regalis, talrige Rødder og Rhizomer.
 Picea excelsa.
 Taxus baccata, et enkelt Fro.
 Acer sp., en enkelt Froskal (Frugtskallen ganske forsvunden).
 Alnus glutinosa, enkelte Frugter.
 Betula nana-Hybrider (L. M. N.).
 — subalpina (L. M. N.).
 Calla palustris, et Brudstykke af et Fro.
 Calluna vulgaris, tykke Rødder, indtil c. 8 mm. i Tværsnit.
 Carex pseudoeyperus, enkelte Frugter.
 Carpinus betulus, talrige Frugter, til Dels gnavede af en lille Gnaver.
 Corylus avellana, en stor Nød.
 Enodium (Molinia) coeruleum, Rhizomer.
 Eriophorum vaginatum, talrige Tuer.
 Quercus sp. (pedunculata), et Blad.
 Rhamnus frangula, enkelte Fro.
 Rubus idæus, enkelte Frugtstene.

Picea: I Lag V fandtes de første hele Grankogler, der forovrigt var noget medtagne; desuden talrige Fro med og uden Vinge, store Mængder af Naale, til Dels kraftige og store, indtil 17 mm.
lange; ogsaa tynde Grene med Knaster. Torven var pletvis ganske opfyldt af Naale, en ren „Grantørv“.

VI. 1—1,35 m. under Torvens Overflade.

Donacia sp., Vingedækker.
Ekskrementer af *Mus (Mus sylvaticus?)*.
— - Cervide (*Cervus dama?)*.

Planter:
Cenococcum geophilum, talrige store Kugler.
Sphagnum-Kapsler med gule Sporer og løstliggende Laag.
Osmunda regalis, talrige Rester.
Picea excelsa, en enkelt Naal.
Taxus baccata, et enkelt Blad og et knust Fro.
Alnus glutinosa, enkelte Frugter.
Caltona vulgaris, talrige Rodder.
Carex sp., Blade.
Carpinus betulus, Nødder.
Corylus avellana, talrige Nødder, alle fladtrykte og knuste, til Dels musegnavede (af Skovmus?).
Eriophorum vaginatum, talrige Tuer.
Hex aquifolium, to Fruglstene.
Oxycoccus palustris, enkelte Blade.
Salix cfr. caprea, Blade.
Tilia grandifolia, en enkelt, velbevaret Frugt, lidt skævt fladtrykt, med skarpt fremtrædende Ribber.
Vaccinium uliginosum, nogle faa Blade.

Donacia-Vingedækkerne forekommer særlig hyppigt inde i de meget fladtrykte *Eriophorum*-Tuer.
Cenococcum optræder i disse Lag i meget stor Mængde og naar en anselig Størrelse; de største Kugler (der forovrigt sjældent har ganske regelmæssig Kugleform) maaler 3,5 mm. i Tæversnit, de mindste 2 mm.; den er især hyppig i Osmunda-Roddernes tætte Filt.

Osmunda: Talrige kraftige, velbevarede Rhizomer og sorte Rødder (Tavle VI, Fig. 1); disse sidste er hyppigst baandformede, sjældnere cylindriske. Smaablade af Kongebregnen er ligeledes hyppige i dette Lag, hvori ogsaa fandtes det eneste større Osmunda-Blad, som det er lykkedes mig at faa udpræpareret (Tavle VI, Fig. 3); dette Blad har endnu c. 10 Smaablade bevarede.

Ved en mikroskopisk Analyse af Torv fra dette Lag fandt Prof. G. Lagerheim1):

Sphagnum sp., Sporer, almindelige.
Osmunda regalis, talrige Sporer.
* Polypodium vulgare, Sporer, ikke sjældne.
* Polystichum thelypteris, Sporer.
* Pinnus silvestris, Pollen.
Alnus sp., Pollen.
Corylus (eller Myrica?), Pollen.

I en anden Prøve fra samme Lag noterede Prof. G. Lagerheim:
* Olpidium luxurians, i Pollen af Corylus (eller Myrica?).
Sphagnum, Sporer i Mængde.
Osmunda regalis, almindelig.
* Polypodium vulgare, ikke sjælden.
* Polystichum cristatum.
* — spinulosum.
* — thelypteris.
Picea Abies (= excelsa), almindelig, Pollen.
* Pinnus silvestris, sparsomt Pollen.
Alnus sp., Pollen.
Carpinus, Pollen.
Corylus (eller Myrica?), Pollen.
* Quercus, Pollen.
* Ulmus, Pollen.

VII. 1,35—1,90 m. under Torvens Overflade.

Sphagnumtorv som foregaaende. Fra dette Lag hjembragte jeg til Undersøgelse i Laboratoriet flere store Torveflager af c. 35 cm. Tykkelse og 50 cm. i Kvadrat. Dopplerit fandtes ofte udskilt i Torven.

1) De med * mærkede Arter havde jeg ikke fundet i Laget.
Dyr: *Cecidomyia alni*, løsrevne Galler fra Elleblade.
Oligochet-Kapsler.
Anchomemis moestus Duft., Vingedækker.
Donacia (Platnumaris) micans Amens. Vingedækker.
Ekskrementer (af *Cervus dama*?).
Musegnav i Nødder (Skovmunus?).

Planter: *Cenococcum geophilum*, utallige Kugler af anselig Størrelse (indtil 3,5 mm.).
Coniosporium miserrimum Karst., paa Birkebark.
Diplodiella sp., paa Ved.
Acrocladium cuspidatum, talrige sorte, bladlose Stængler.
Sphagnum-Kapsler med gule Sporer.
Thyidium Blandowii.
Osmunda regalis, talrige Rødder, Rodstokke og lose Sporangier; Rodstokkene til Dels formuldede.
Taxus baccata, et Fro.
Acer sp., to Froskaller med dieses karakteristiske Overflade-Skulptur.
Alnus glutinosa, talrige Frugter.
Belula nana og nana-Hybrider (L. M. N.).

— subalpina (L. M. N.).
— verrucosa f. borealis (L. M. N.).

Talrige fladtrykte, hvidbarkede Grene og Rødder; talrige ♂-Rakleskæl; der fandtes et Brudstykke af en ♂-Rakle med talrige Skæl og Frugter; ved Kogning af denne isoleredes over 40 Rakleskæl med tilhorende Frugter, hvis Vinger forovrigt var noget medtagne; enkelte Blade.

Corylus avellana, talrige Nødder, de fleste musegnavede; til Dels meget fladtrykte og knuste. (Tavle XIII).
Drosera rotundifolia, talrige Fro (Tavle VI, Fig. 5).
Empetrum nigrum, utallige Rødder og Grene med Blade, meget smukt bevarede; jeg isolerede Grene af indtil 20 cm. Længde. (Tavle VII, Fig. 1). Enkelte Frugtstene.
Eriophorum vaginatum, talrige Tuer.
Lycoctus europaeus, enkelte Smaafrugter.
Menyanthes trifoliata, enkelte Fro.
Oenanthe phellandrium, Frugter.
Oxycoccus palustris, talrige tynde, sorte Stængler.
Prunus padus, en enkelt Frugtsten.
Quercus sp., et Fragment af en Nød.
Rhamnus frangula, enkelte Fro.
Salix cfr. caprea, dannede pletvis hele Bladlag.
Sparganium sp., en enkelt Sten.
Tilia grandifolia, en Kapsel (Tavle VII, Fig. 2).
Typha sp., enkelte Frugter.
Vaccinium uliginosum, talrige Blade, indtil 2,1 cm. lange og 1,9 cm. brede.
Viola palustris, Brustykker af Kapsler og talrige Frø.

I en af de store Torveflager fra dette Lag fandtes et stort Rhizomstykke af Osmunda, 21 cm. langt, af en sjælden Skønhed; Bladbaserne er nemlig graahvide og kontrasterer smukt med de fra Bladhjørnerne udgaaende, sorte Rodder.

I en Kæruld-Tue, mellem Bladskederne og Rodderne, fandt jeg talrige Hasselnødder, der aabenbart var ophobede her af den lille Mus (vel Skovmus), hvis Tænder havde efterladt Mærker paa de gnavede Noddeskaller (Tavle XIII).

Ved en mikroskopisk Analyse af Torv fra dette Lag fandt Prof. G. Lagerheim¹):

- Osmunda regalis, sjældent
- * Polypodium vulgare, ikke sjældent Sporer.
- * Polystichum spinulosum, ikke sjældent
- * Picea Abies (= excelsa), meget sjældent Pollen.
- * Pinus silvestris, sparsomt
- Alnus sp., meget almindeligt.

VIII. 1,70—1,95 m. under Torvens Overflade.

Det nederste Lag Sphagnumtorv.

Dyr: Donacia sp., Vingedækker.
Ekskrementer (af Cervus dama?).

Calluna vulgaris, talrige Rodder og Grene.
Carex ampollicea, et enkelt ♀-Aks med talrige Frugter.
- filiformis, en etnelt Frugt med utriculus.
- pseudocyperus, talrige Frugter med velbevaret utriculus.
Corylus avellana, et Brustykke af en dybt furet Nød.
Emetrum nigrum, talrige bladbærende Grene, der pletvis dannede hele Tæpper i Torven; enkelte Frugtstene.
Eriophorum vaginatum, talrige Tuer.

¹) De med * mærkede Arter havde jeg ikke fundet i Laget.
Prunus padus, en Frugtsten.
Rubus idæus, der fandtes flere Opholminger af Frugtstene i Hundredvis: mellem Stene enkelte smaa, hvide Kvartskorn; Ekskremente af?
Salix cfr. caprea, talrige smukt bevarede Blade, iser nederst i Torven.
Sparganium sp., to Stene.
Ulmus sp., tre Frugter uden Vinge.

IX. 1,95—2,00 m. under Torvens Overflade.

Meeseatorv. Under Sphagnumtorven fandtes et tyndt Lag Mostorv, hovedsagelig dannet af Meesea longiseta, aabenbart afsat under betydeligt fugtigere Forhold end Sphagnumtorven. Indhold:

Amblystegium fluitans.
— scorpioides.
Meesea longiseta Hedw., overvejende.
Betula subalpina, nogle faa, smaa $?-Rakleskæl (L. M. N.).
Carex pseudocypern, et helt $?-Aks, hvis Frugter ligger samlede i Hundredvis.
Menyanthes trifoliata, talrige Fro.
Myriophytum spicatum, en enkelt Frugt.
Prunus padus, tre smukt bevarede Stene (Tavle VI, Fig. 6).
Sparganium sp., talrige Stene.
Typha sp., Frugter i uhyre Mængde.
Viscum album, et Brudstykke af et Blad.

Ved en mikroskopisk Analyse af Meeseatorven fandt Prof. G. Lagerheim1):

* Botryococcus Braunnii.
* Lycopodium clavatum, 1 Spore.

1) De med * mærkede Arter havde jeg ikke fundet i Laget.
* Polystichum filix mas
* — spinulosum \(\text{Sporer.} \)
* — thelypteris
* *Picea Abies (= excelsa), meget sjældent
* *Pinus silvestris*, talrigt
 Betula sp.
* *Drosera rotundifolia* (ifølge O. Rosenberg)
 Menyanthes trifoliata
 Typha latifolia, almindeligt

\[\text{X. 2,00—2,60 m. under Torvens Overflade.} \]

Gytje under Torven. En mørk, sandet-leret Gytje med enkelte tynde Lerlag isprængte. I Gytjen laa talrige rullede, afbarkede Grenstykker, ofte med et sort Overtræk af Dopplerit paa Overfladen; og-saa i Sprækker i Gytjen fandtes et sort. i fugtig Tilstand blødt Stof, der vistnok er Dopplerit.

Dyr: *Daphnia pulex*, Ehippier.
 Phryganide-Larvehylster, sammenspundet af Hypna.

Planter: *Cenococcum geophilum*, meget smaa Kugler.
 Acrocladium cuspidatum (L.) Lindb.
 Amblystegium giganteum (Schimp.) De Not.
 — sp. (? Kneiffii Br. eur.).
 Meesea longiseta Hedw., talrige Stængler.
 Sphagnum sp. (? *tenellum* Ennrl.).
 Betula nana og *nana*-Hybrider (L. M. N.).
 — *sabalpina*, talrige Frugter og *?-Rakleskæl* (L. M. N.),
 desuden talrige Blade.
 Calluna vulgaris, en lille Grenspids med Blade, ikke fladtrykt.
 Carex ampullacea, enkelte Frugter.
 — *filiformis*, enkelte Frugter.
 — *pseudocyperus*, talrige Frugter
 Cirsium lanceolatum, en enkelt Frugt.
 Comarum palustre, Smaafrugter.
 Lycopus europaeus, talrige Frugter.
 Menyanthes trifoliata, talrige Fro, til Dels usædvanlig smaa.
 Populus tremula, et Rakleskæl og en Bladknop.
 Rubus idæus, enkelte Stene.
 Rumex maritimus, en udmærket smukt bevaret Frugt med
 Stilk og Blisterblade (Tavle VII, Fig. 3).
 Salix cfr. caprea, talrige Blade og Bladknopper.
 Sparganium sp., enkelte Fruglstene.
Viola palustris, talrige Fro.
Viscum album, 4 Bær, fladttrykte, men let kendelige, idet de 4 Ar efter Blomsterbladene og et større Ar efter Griffen fremtræder som mørke Figurer paa den gennemsiglige Frugtskal (jfr. Tavle XI, Fig. 29); denne viser sig ved mikroskopisk Undersøgelse særdeles vel bevaret. I to af Bærrene var endog Kimene bevaret.

Ved en mikroskopisk Analyse af Gytjen fandt Prof. G. Lægerheim 1):

* **Amphitrema flavum** Arch. (Rhizopod).
* **Spongilla bacustris**, spicula.
* **Anabaena** sp., Sporer.
* **Botryococcus Braunnii**.
* **Cosmarium**, 3 Arter.
* **Monoblepharis** sp., Sporer.
* **Sphauginum** sp., Sporer.
* **Lycopodium annotinum**, Sporer.
* **Polypodium vulgare**, 1 Spore.
* **Lastræa (Polystichum) filix mas**, Sporer ikke sjældne.
* — — **spinulosa**, Sporer.
* — — **thelepterus**, Sporer ikke sjældne.
* Betula sp., Pollen.
* **Menyanthes trifoliata**, Pollen.
* **Typha latifolia**, Pollen.
(Picea og Alnus ikke fundne).

Hr. Cand. polyt. E. Østrup fandt i Gytjen følgende Diatoméer:

* **Cocconeis placenta** Ehr., 1 Eks.
* **Fragilaria mutabilis** Grun. f. minutissima Grun., 1 Eks.
* **Gomphonema parvulum** Ktz. var. micropus Ktz., 1 Eks.
* **Meridian circulare** (Grev.) Ag., 1 Eks.
* **Synedra** sp., Brudstykke (vist nok **Synedra ulna**).
Et Kantstykke af en **Nitzchia** sp.

1) De med * mærkede Arter havde jeg ikke fundet i Laget.
XI. Ferskvandssandet under Gytjen.

Paa Grund af Vandtilstrømningen blev kun en lille Prove af dette Lag optaget af Bronden.

Cenococcum geophilum, meget smaa Kugler, 0,3—0,5 mm. i Tværsnit.

Batrachium cfr. conferoides, en enkelt lille Frugt.

Betula subalpina — *verrucosa f. borealis*

Calluna vulgaris, en smuk Grenspids med Blade, 1 cm. lang, ikke fladtrykt.

Carex pseudocyperus, enkelt Frugter.

Comarum palustre, nogle faa Nødder.

Rubus idæus, en enkelt Frugtsten.

Viola palustris, talrige Fro.

Fra denne Mose i Brørup Stationsby kendes derefter følgende Dyr og Planter, ialt c. 90 Arter:

<table>
<thead>
<tr>
<th>Brørup Stationsby</th>
<th>Sphagnumtorv</th>
<th>Mus</th>
<th>Gyld</th>
<th>F. V. sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
</tbody>
</table>

Dyr:

Amphilerema florum

Spongilla lacustris, spicula

Oligochaeta, Kokoner

Daphnia pulex, Vinteræg

Anchomenus moëstus

Cecidomia alni, Galler

Donacia (Plateumaris) micans

Phryganide, Larvehylstre

Mus (Mus sylvaticus?), Ekskre- menter og Gnaw.

Cervide (Cervus dama?)

Planter:

Anabarna sp.

Botryococcus Brauruii

Cosmarium spp.

Cocconeis placentula
<table>
<thead>
<tr>
<th>Brorup Stationsby</th>
<th>Sphagnauntory</th>
<th>Mesectory</th>
<th>Gyje</th>
<th>F. V. sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Fragilaria mutabilis f.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphonema parvulum var. micropus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridion circulare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synedra sp. (ulna)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenococcum geophilum</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coniosporium miserrimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplodiella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoblepharis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olpidium luxurians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosellinia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrocladium cuspidatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblystegium fluviatilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>giganteum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp. (Kneiffii?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scorpioides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypnum purum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meesia longiseta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytrichum commune</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphagnum sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuidium Blandowii</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastrea cristata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>filix mas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spinulosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>thelypteris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopodium annotinum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clavatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophioglossum vulgatum</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmunda regalis</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypodium vulgare</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea excelsa</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus baccata</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brorup Stationsby</td>
<td>Sphagnumtory</td>
<td>Mesecatorv</td>
<td>Gyje</td>
<td>F. v. sand</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Batrachium cfr. conservoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula alba</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— nana og Hybrider</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— subalpina</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— verrucosa f. borealis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calla palustris</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carex ampullacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— filiformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— pseudocyperus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cirsiun lanceolatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comarum palustre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drosera rotundifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Empetrum nigrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enodium coeruleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriophorum vaginatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flex aquifolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopus europæus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menyanthes trifoliata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myriophyllum spicatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oenanthe phellandrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxycoccus palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Populus tremula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prunus padus</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus (pedunculata?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus frangula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rumex maritimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix cfr. caprea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilia grandifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typha latifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinium uliginosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscum album</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Almindelige Bemærkninger om Mosen i Brørup Stationsby.

Det sidste Afsnit i Mosens Udviklingshistorie fik sit Præg af den fremrykkende (baltiske) Indlandsis og de foran den fremstommende Smeltevandsfjorder, der gravede bort af Mosens overste Lag; disse vilde sikkert ellers have bevaret Rester af den rent arktiske Vegetation, som maa antages at have vokset paa Mosen, inden denne blev dækket af Isen og dens Afspringer. „Overgangslaget“, det „fedt“, brune, humose Sand, mellem Torven og det overliggende, hvide eller hvidgule, diluviale Sand, maa antages dannet ved Sammenæltning af Sand, Ler og Torv.

At Isen maa antages at være gaaet hen over Mosen og hele Bakken, skal jeg begrunde nærmere i et følgende Afsnit; saa meget er i hvert Fald sikkert, at Mosen er dækket af et diluvialt Sandlag af

¹) Den faste, komprimerede Gytje, der i Profiliet havde en Mægtighed af c.²/₃ m., svarer naturligvis til en frisk, blod Gytjemasse af betydeligt større Mægtighed, vel nok mindst 3—4 Gange, sandsynligvis endnu flere Gange saa stor som den komprimerede Masse.

²) Meeselaget i denne Mose svarer til f. Eks. *Hypnum cordifolium*-Laget i Lille-mose i Nordsjælland jfr. JAEPEUS STEENSTRUP. 1842. S. 50 og 54 og de Hypnumlag, som ifolge VADELL 1851, S. 1—2) ofte findes mellem den amorfe Torve. Gytjen og *Svampen* 3; Sphagnumtorven i de nordsjælundske Skovmoser.

³) Mærkeligt nok fandt jeg ikke en eneste Frugtsten af *Potamogeton* i denne Mose; ellers er *Potamogeton*-Artet meget almindelige i de interglacialte Ferskvandslag lige som i de præglacialte og postglacialte.
c. 6 m. Mægtighed, og at den — som vi ved fra talrige Grusgrave, Boringe og Gravninger i denne Egn — underlejres af mægtige diluviale Lag.

De Arter, der floristisk set præger Mosen, er Gran og Avnbøg; intet af disse to Skovtræer er hidtil kendt fra danske postglaciale Lag ligesaa lidt som fra Nordvest-Tysklands¹), Syd-Sveriges²) eller England's postglaciale Lag; de er derimod begge karakteristiske for de samme Egnes interglaciale Lag.

Det er imidlertid ikke blot disse Arters Forekomst (og Forekomsten af Ilex, Tilia grandifolia, Viscum og Taxus, som heller ikke er omtalte fra vore postglaciale Moser), der formentlig beviser, at Mosen er interglacial; Mosens Beliggenhed over og under diluviale Lag er et yderligere Bevis for dens interglaciale Alder, og endelig peger Arternes Fordeling i Mosens forskellige Lag i samme Retning, eller rettere: kun ved at antage en interglacial Alder for Mosen, faar man en naturlig og utvungen Forklaring af Arternes Opræden i Mosens forskellige Lag.

Et idealt Profil i en interglacial Mose (eller anden interglacial, planteforende Aflejring) vil jo nemlig se saaledes ud:

Overst: Diluviale Lag (Moræne eller fluvioglaciale Lag).

<table>
<thead>
<tr>
<th>Lag med arktiske Planterester.</th>
<th>subarktiske</th>
<th>tempererede</th>
<th>(Temperatur-Maksimum!)</th>
<th>subarktiske</th>
<th>arktiske</th>
</tr>
</thead>
</table>

Nederst: Diluviale Lag (Moræne eller fluvioglacial Lag).

Af disse Lag mangler i Brorup-Profilet det overste og nederste Lag med rent arktisk Flora, medens Profillet ellers — som man vil se af Tabellerne — udmærket godt opfylder det ideale Profils Krav:

Diluviale Lag, 6 Meter.

Lag med arktisk Flora mangler, sandsynligvis bort-eroderet!

Sphagnumtoryv med en subarktisk Flora: Betula subalpina og nana og enkelte „varmere” Arter.

Sphagnumtorv med flere „varme“ Arter: Ilex, Taxus, Tilia grandifolia.

Ferskvandsslag med subarktiske Birke og Populus tremula; de „varme“ Arter, ogsåsaa Picea, er endnu ikke indvandrede.

Lag med arktisk Flora ikke naaet, sandsynligvis dybereliggende!

Diluviale Lag, ikke naaede.

For nærmere at illustrere dette Forhold, har jeg i Tabellen S. 159 sammenstillet de i Mosen fundne Træer og Buske og opført dem i den Rækkefølge, i hvilken de først optræder i (er indvandrede til) Mosen. Det fremgaaer klart af denne Tabel, at de Arter, der viser sig sidst i Lagserien, ogsaa forsvinder tidligst, med andre Ord: de findes kun i Mosens mellemste Partier, der svarer til Interglacialtidens Temperatur-Maximum.

I det store og hele svarer Tabellens Rækkefølge til disse Plantarteres geografiske Udbredelse i Nutiden, saaledes at de, der nævnes først i Tabellen, gaar længst mod Nord og stiller de beksedneste Temperatur-Krav, medens de Arter, der nævnes sidst i Tabellen, stopper op i større Afstand fra Polarkredsen og stiller større Temperatur-Krav end de første. Tilia grandifolia, llex og Taxus, vel nok de mest termofile af disse Arter, findes kun i Mosens mellemste Partier.

Til fuld Forståelse af Tabellen udkræves nogle supplerende Bemærkninger: Af Ferskvandssandet (XI) fik jeg paa Grund af den stærke Vandtilstrømning kun saa lidt Materiale op af Brønden, at der ikke kan lægges stor Vægt paa, om en Art ikke er fundet i dette Lag; det var saa meget mere beklageligt, at Gravningen ikke kunde fortsættes til større Dybde, som man her kunde gøre sig Haab om at finde en rent polar Flora (Salix polaris m. m.). Gytjelaget (X) er derimod saa grundigt undersøgt, dels mikroskopisk af Prof. Lagerheim, dels makroskopisk af mig, at man ogsaa kan drage Slutninger af vore negative Fund; det fortjener f. Eks. at fremhæves, at medens Pollen af Pinus fandtes i Mængde i Gytjen og Meesealaget (IX), angiver Prof. Lagerheim udtrykkeligt, at Picea-Pollen ikke fandtes i Gytjen, men først i Meesealaget; at Granen efterhaanden fortrænger Fyrren, viser sig med al ønskelig Tydelighed, baade af mine Fund og af Prof. Lagerheim’s Bemærkning, at Pinus-Pollen kun fandtes i ringe Mængde i Lag VII og VI, hvor Picea fuldstændigt dominerer.

(Ved tykke Linjer antydes Artens Hyppighed; ved en stiplet Linje antydes, at Arten ikke er fundet i vedkommende Lag, men dog maa antages at forekomme der.
Sphagnumtorv

<table>
<thead>
<tr>
<th>F.V.</th>
<th>Sand</th>
<th>Gyldenl.</th>
<th>Mesectormy</th>
<th>Sphagnumtorv</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>X</td>
<td>IX</td>
<td>VIII</td>
<td>VII</td>
</tr>
</tbody>
</table>

Betula nana og Hybrider...

- *subalpina* ...
- *verrucosa* f...

Populus tremula ...

Rubus ideus ...

Pinus silvestris ...

Salix cfr. caprea ...

Viscum album ...

Ulmus sp. (montana?) ...

Picea excelsa ...

Prunus padus ...

Corylus avellana ...

Alnus glutinosa ...

Quercus (pedunculata) ...

Acer sp. ...

Taxus baccata ...

Tilia grandifolia ...

Carpinus betulus ...

Ilex aquifolium ...

Indenfor Lag VII—V (1,70—1,00 m. under Torvens Overflade) indtræder Temperatur-Maksimet; her findes — som nævnt — alle de mest termophile Arter.

De overste 35 cm. af Torven, Lag I—II, var saa formuldede, at kun de allermeest resistante Plantester var bevarede; Torven i disse Lag maa derfor antages, inden den formuldedes, at have indeholdt betydeligt flere Plantester end jeg fandt i den, og de alleroverste, yngste Lag af Torven maa, som ovenfor sagt, antages at være ganske forsvundne eller saa fuldstændigt indæltede i det overliggende Sand og Ler („Overgangslaget“), at Plantestererne er ganske ukendelige.

De talrige Rester af subarktiske Birke i Mosens ovre Lag og den næsten fuldstændige Forsvinden af de termophile Arter i de samme Lag tyder bestemt paa en Aftagen i Temperatur; de hvide Birkebarkstykke (Næver) fra Lag I og II, som jeg har henført til LINNÉ’s gamle Kollektiv-Art *Betula alba*, hører efter al Sandsynlighed til *B. subalpina*.
Alle Grannaalene i Lag II er meget smaa; Granen er aabenbart ikke saa kraftig i dette Lag som i Mosens mellemste Partier, hvor Naalene er dobbelt saa lange eller endnu længere.

Carpinus er den eneste af de termofile Arter, der er fundet i Sphagnumtorvens næstoverste Lag (II); som nævnt S. 142 var det kun en enkelt forkæltet Nød, der blev fundet i dette Lag.

Ovenfor er peget på den betydelige floristiske Forskel mellem den interglaciale Brørup-Mose og vore postglaciale Moser; den Rækkefølge, hvori de fælles Arter er indvandrede eller har indfundet sig i Moserne, synes dog i store Træk at være den samme; først Bævreasp og Birk, derpaa Fyr, saa Eg — selv om det i Brørup-Mosen ikke er muligt at sondre de forskellige Skovtræers Zoner saa skarpt som i mange postglaciale Moser.

Naturligvis kan et enkelt Profil i en enkelt Mose kun give An-tydninger, ikke sikre Beviser; dertil kræves ganske anderledes omfangs-rige Undersøgelser. Men Resultaterne af Studiet af dette Moseprofil er dog ganske slaaende og falder saa udmærket i Traad med Resultaterne af mine Studier over andre interglaciale Lag — især med Ejstrup-Profilet (se nedenfor) — og stemmer saa noje med WEBER’s og andres tilsvarende Undersøgelser i Nordtyskland, at det ikke kan bero paa Tilfældigheder. Det er tværtimod et Led i, hvad jeg vil kalde det biologiske eller palæontologiske Bevis for Mosens interglaciale Alder.

Mose paa Tuesbol Mark.

I Begyndelsen af September 1898 foretog jeg flere Brondgrav-ningerne i en lille "underjordisk" Mose paa Tuesbol Mark, paa Boelsmand Peter HUMMELGAARD’s Lod, »Moschus«, omtrent ¼ Mil Nordvest for Brørup Station; Mosens Beliggenhed er paa Kortet Fig. 15, S. 140 mærket med et Kryds og 3. — Allerede for mange Aar siden havde Hr. HUMMELGAARD fundet den underjordiske Torv ved Brondgravning; han havde ogsaa benyttet den til Brændselsbrug og opgav, at han havde gravet gennem 14 Alen (9 m.) Torv uden at naa igennem den; denne Angivelse af Torvens Mægtighed er dog vistnok overdreven og maa sikkert bero paa en Fejlhuskning.

I Aarønes Lob har jeg sat c. 10 Bronde ned i denne lille Mose; Fordybningen i Marken over Mosen er nu meget flad, næppe mere end 1—2 m. dyb; den er næsten cirkelrund i Omkreds og c. 50 m.
i Diameter; men den skaalformede Fordybning er ifølge Hr. HUMMELGAARD ved Pløjning og Paakørsel af Fyld efterhaanden blevet fladere end oprindelig. Da Hr. HUMMELGAARD for 30—40 Aar siden overtog Huset, stod Lavningen altid fyldt med Vand om Vinteren og var lidt torvelfyldt; endnu i Januar 1903, da jeg besøgte Stedet, var Midten af Lavningen vandfyldt.

Fig. 16. Lavningen over den interglaciale Mose paa Tuesbol Mark (mellem Gaarden og Forgrunden.)

Brønd I.

Den første Brønd blev gravet omtrent dør, hvor Manden staar paa Fig. 16 lidt Vest for den Markvej, der fra P. HUMMELGAARD’s Boelssted, Kortets Mosehus, gaar mod Nord til Tuesbol By (den mørke Stribe bag Manden er Markvejen); Profilet var følgende:

Moderne Sphagnummose, for Storstedelen afgravet og erstattet med Fyld.
1,0 m. lagdelt Sand.
0,8 - humost Sand, „Obergangslag“.
2,5 - Torv.

Undergrunden under Torven blev her ikke naaet paa Grund af Vandtilstrømning.
Af „Overgangslaget“, der ganske lignede det tilsvarende Lag i Brørup-Mosen, har Hr. Cand. polyt. A.L. STAGE i 1904 foretaget en Glødningsanalyse; den undersøgte Prøve indeholdt 83,4% Aske med et Glødtab af 16,6%.

Tørven kunde sondres i 5 Lag:

1.60 m. Sphagnumtørv (A—D).
0,20 - Hypnumtørv (E).
0,55 - Grentørv (F—G).
0,25 - Sphagnumtørv (H—I).
0,50 - Grentørv (K).

A. 0—25 cm. under Tørvens Overflade. Halvt formuldet Sphagnumtørv med kun få bevarede Planterester:

Sphagnum sp., Stængler og Blade.
Betula alba, Bark.
Eriophorum vaginatum, Bladrester.
Oxycoccus palustris, Stængler.

B. 25—50 cm. under Tørvens Overflade. Halvt formuldet Sphagnumtørv:

Armillaria mellea, sorte grenede Rhizomorpher.
Cenococcum geophilum, enkelte Kugler, 1,3—2 mm. i Tværsnit.
Mycorrhiza sp., løstliggende, koralformet grenede Mycorrhizer (E. R.) Taxle VII, Fig. 7.
Sphagnum sp.
Stereodon cupressiformis.
Pinus silvestris, talrige Rester.
Betula odorata, enkelte Hunrakleskæl og Grene med Bark.
Calluna vulgaris, talrige bladbærende Grene, 0,5—1 cm. lange; enkelte kraftige Grene af 1,5—1,8 cm. Længde.
Talrige Blomster og Frugter med Bægerblade, samt en Mængde lange, kraftige Rødder.
Empetrum nigrum, lange forgrenede Stængler indtil 9 cm. Længde; en enkelt smukt bevaret Gren med talrige Blade.
Eriophorum vaginatum, Bladrester.
Oxycoccus palustris, sorte Stængler og løsrevne Blade.

Af Pinus fandtes Tusinder af affaldne Naale; Tørven var til Dels en fuldstændig Skovbund, bestroet med Fyrrenaale. Bladenes Maksimallængde var 3 cm., de fleste var endnu kortere, indtil 0,6 cm., altså meget smaa Blade, hvilket netop karakteriserer Mosefyr. Også
Koglerne var meget smaa; de største 3,5 cm. lange, nogle knap 2 cm. lange. Frøene var korte og brede. Desuden forekom talrige Grene og Rødder med Bark, brændte Trækul og store buede Knaster, som maa stamme fra store Træer, samt Barkflager af store, kraftige Træer.

C.—D. 50—100 cm. under Torvens Overflade. Frisk, uformuldet Sphagnumtorv, med lignende Planterester som i A og B. Der fandtes her enkelte Vingedækker af Donacia (Platenamris) micans Ahrens, desuden en Del Stængler af Polytrichum strictum. Af Picea forekom enkelte Naale; ogsaa Pinus var almindelig her, om end ikke saa almindelig som i B. Af Calluna fandtes kun Rødder, stammende fra Lyngdækket i B. Igennem hele Sphagnummassen fandt jeg ofte ved Spaltning af Torven nogle smaa, sorte, tændede Legemer af c. 5 mm. Længde og 0,5 mm. Maksimums-Tværsnit; ofte ligger de sammen i store Ophobninger eller ordnede i kortere eller længere Strænge. Ved en overfladisk Betragtning minder de i sidste Fald om Erica-Blade (hvad jeg ogsaa kaldte dem i mine Dagbogsoptegnelser); det er i Virkeligheden Karstrænge af Eriophorum-Tuer; i Litteraturen har jeg senere fundet dem omtalte af C. Weber fra Augustmal Moor, (1902, S. 184, Fodnoten).

Den nederste Del af Sphagnumtorven (75—100 cm.) var paafaldende fattig paa Indblandinger af andre Planter; jeg saa her kun talrige Birkegrene, Kæruld-Tuer og Tranebær-Stængler.

E. 1,0—1,26 m. under Torvens Overflade. Hypnumtorv med indblandet Sphagnum, for en stor Del en ren Grantorv, dannet af Naale af Gran (Tavle IX, Fig. 18); Hypnumtorven er dannet i Vand, vi træffer i den ogsaa talrige Potamogoton-Stene; paa Sphagnumtorven omkring Vandhullerne har Granen vokset sammen med Bregner, Stargæs o. s. v.

Anchomenus moéstus Duft., Vingedækker.
Hypnum prælongum, overvejende.
Pohlia (? mutans).
Stereodon cupressiformis.
Sphagnum sp.
Lustroca thelypteris, et Bladfragment.
Picea excelsa, Naale, Fro og Grene i uhyre Mængde; i dette Lag fandtes den Tavle IX, Fig. 17 afbildede unge Gran med Rødder, der aabenbart har vokset paa Mosens da-VERende Overflade; ogsaa den paa Tavle IX, Fig. 18 afbildede Grantorv stammer fra dette Lag ligesom den lille Grangren, Tavle IX, Fig. 16.

F. 1,20—1,50 m. under Torvens Overflade. Gæntørv med talrige Vand- og Sumpplanter:

G. 1,50—1,75 m. under Torvens Overflade. Grentørv.

Donacia sp., Vingedækker. Coniothecium sp., paa Ved.
Hylocomium triquetrum, to smaa bladbærende Stængler.
Sphagnum (?) cymbifolium, Kapsler med gule Sporer.
Osmunda regalis, et fladtrykt Rhizom, kun Karstræng-
bunderne bevarede som lange, sorte krumme Syle (min-
der om Tavle VI, Fig. 2 fra Brorup-Mosen).
Picea excelsa, Fro, Naale og Grene.
Alnus glutinosa, en enkelt Nod.
Carex sp., talrige Nødder uden utriculus.
Ceratophyllum demersum, enkelle tornlose Frugter.
Corylus avellana, talrige, til Dels gnavede Nødder.
Potamogeton perfoliatus, enkelle Frugtstene.
— trichoides, talrige Frugtstene.
Rubus idæus, en Frugtsten.
Salix cfr. caprea, et Blad.
Sparganium ramosum, en Dobbeltsten.
Stratiotes aloides, et Fro.

H. 1,75—2,00 m. under Tørvens Overflade. Sphagnum torv med en Del indblandet Kvartssand (Kvartskorn op til 3—4 mm. Størrelse); der fandtes hist og her i Torven hele smaa Ophobninger af Kvartskorn og Potamogeton-Stene (Ekskrementer?).

Oodes helopioides F., Vingedækker.
Sphagnum cymbifolium.
Picea excelsa, nogle faa Naale.
Potamogeton perfoliatus, Frugtstene.
— zosterifolius, talrige Frugtstene.
Salix sp., et Brudstykke af et Blad.
Sparganium ramosum, en enkelt Frugtsten.

I. 2,0—2,25 m. under Torvens Overflade. Sphagnum torv.

Donacia (Plateumaris) micans Ahr., Vingedækker.
Phryganiæ, Larvehylstre, dannede af sorte Bregnerødder.
Sphagnum (?) cymbifolium).
Lastræa thelypteris, sorte, glinsende Rhizomer, cylindriske,
3—4 mm. i Tværsnit; talrige løstliggende Sporangier.
Eriophorum vaginatum, talrige Tuer.
Flex aquilinum, talrige smukt bevarede Blade; kun Epider-
mis og Karstrængene er bevarede; Epidermis viser sig
i den friske Torv som en klar, undertiden svagt grønlig,
genæmsigtig Hinde; dens Celler er udmærket velbevarede.
Oxycoccus palustris, talrige Stængler.
Quercus petraea, en Bladbasis, tydeligt oret; desuden
Grene og Bark af store Stammer.
J. — K. 2,25—2,75 m. under Tøvenses Overflade. Grentørv med en Mængde rullede og afbarkede Smaapinde og Grenstykker af Eg, Birk og El; i den nederste Del overvejende smaa, ubeskadigede, barkeede Grene af El.

Brønd II.

Samme Aar gravedes en anden Brønd i samme Mose, faa Meter Nord for Brønd I; Profilet var her:

- 0,65 m. postglacial Sphagnumtorv, formuldet.
- 1,00 - Sand med meget faa Sten (incl. „Oerglasslaget“).
- 1,00 - Sphagnumtorv (I—III).
- 0,10 - sort, „bladet“ Gytje (IV).
- 0,15 - lys, leret, glimmerrig Gytje, kalkfri (V).
- 2,00 - sandet-gruset, kalkfrit Ler (Moræneler), konstateret ved Boring.

Torven var en stærkt sammenpresset Sphagnumtorv; den overste Del af Torven var stærkt foldet, ofte Dopplerit i Spalterne i Torven.

I. 0—0,33 m. under Tøvenses Overflade. Lys brun Sphagnumtorv. *Cenococcum geophilum.*

Entorrhiza vaccinii E. Rostr. n. sp., Tavle VII, Fig. 4—6.
Polytrichum juniperinum.
Sphagnum sp.
Lastrea thelypteris, talrige, velbevarede Blade og Sporangier.
Betula alba, Grene.
Calluna vulgaris, Grene og Rodder.
Eriophorum vaginatum, talrige Tuer.
Lycopus europæus, talrige Frugter.
Oxycoccus palustris, talrige Blade.
Salix cfr. caprea, talrige Blade.
Vaccinium uliginosum, talrige Blade og Grene, især i Mængde i Eriophorum-Tuerne. Bladene varierer meget i Form og Størrelse, dels lange, smalle, indtil 1,5 cm. lange, dels korte og brede. Blade af 3—4 mm. Længde var ikke sjældne; de dannede hele Bladlag.

II. 0,33—0,66 m. under Torvens Overflade. Lys, til Dels meget foldet Sphagnumtorv; Torvens vandrette Spaltellader var ofte sorte, vistnok hidrørende fra periodiske Oversvømmelser af Sphagnumtorven, hvorpaa ogsaa Forekomsten af Sumpplante-Frø kunde tyde.
Lastrea thelypteris, utallige Blade og fine Rodder, som pletvis ganske opfyldte Torven.
Carex pseudocyperus, en Frugt.
Dulichium spathacum, talrige Frugter.
Menyanthes trifoliata, talrige Fro.

Prof. G. Lagerheim fandt ved en mikroskopisk Undersøgelse:
* Amphitrema flavum (Rhizopod).
* Pediastrum angulosum var. araneosa.
* Lastrea (Polystichum) thelypteris, Sporer.
* Picea (eller Abies), Pollen.
* Pinus silvestris, Pollen.
* Alnus sp., Pollen.
* Corylus avellana, Pollen.
* Quercus sp., Pollen.
* Typha latifolia, Pollen.
* Ulmus sp., Pollen.

III. 0,66—1,00 m. under Torvens Overflade; Sphagnumtorv.
Donacia (Plateumaris) micans Ahr., Vingedækker.
Ekskrementer (af Cervus dama?), talrige.
Sphagnum papillosum.
Alnus glutinosa, talrige Frugter.
Calluna vulgaris, talrige bladbærende Grene og Kapsler med Bægerblade og Griffel bevarede.
Oxycoccus palustris, Stengler og Blade.
Vaccinium uliginosum, talrige Blad, indtil 2 cm. lange og 0,8 cm. bred.

IV. 1—1,10 m. under Torvens Overflade. En sort, „bladet“ Gytje med uhyre Mængder af Bregneblade.

Sphagnum sp., Kapsler.
Lasnæa hellyperi, talrige Smaablade og unge, spiralformet oprullede Blad.
Betula odorata, et Hunrakleskæl.
Calluna vulgaris, talrige smaa Grene med Blade.
Carex sp., Frugter uden utriculus.
Cerathophyllum demersum, en Frugt.
Menyanthes trifoliata, Fro.
Oxycoccus palustris, Grene og Blade.
Potamogeton filiformis, 1 Frugtsten.
Quercus sp., en Bladlig af et lille Blad.

V. 1,10—1,25 m. under Torvens Overflade. En lys, lerholdig, glimmrig, kalkfri Gytje. Dopplerit fandtes udskilt især i Gytjens lodrette Sprækker.

Cristatella muceda, talrige Statoblastier.
Chara sp., enkelte Sporer.
Cenococcum geophilum, 2 meget smaa Kugler (0,5 og 1 mm. i Tvensnit).
Sphagnum sp., en Kapsel.
Betula subalpina, et meget lille Hunrakleskæl og tre smaa vingelose Frugter.
Carex sp., enkelte Frugter uden utriculus.
Nymphaea alba, Fro.
Potamogeton natans, en Sten (det. I. P.).
— polygonifolius (eller P. gramineus), tre smaa Stene uden Spirelaag (I. P.).
— prælongus, et Spirelaag af Frugtstenen.
Typha sp., talrige Frugter.

Brønd III.

En tredie Brønd i samme Mose Vest for Brønd I og II, gravet i 1898, viste følgende Forhold:

Moderne Sphagnaumtørv, afgravet.
2,0 m. Sand.
2,6 - Torv.
Blaat, sandet Ler (Moræneler?), vandforende.
Kun den overste Del af Torven (0—1,75 m.) blev gennemgravet; den nederste Del blev — paa Grund af Vandtilstrømning, der forhindrede videre Gravning — kun paavist ved Boring ligesom det blaa Ler under Torven.

1. Sphagnumtorv; 0—1,0 m. under Torvens Overflade.
 Picea excelsa, et enkelt fragmentarisk Blad.
 Carpinus betulus, enkelte Nodder.
 Oxycoccus palustris, Stængler og Blade.

2. Grentorv med talrige afbarkede Grene af Gran og flade Vedfliser eller afbarkede Smaagrene af Birk; pletvis Bregnetorv, næsten udelukkende dannet af sorte *Lastraea*—Rodder; 1,0—1,25 m. under Torvens Overflade.
 Cenococcum geophilum, enkelte Kugler (1,5 mm.).
 Lastraea thelypteris, Rodder og Blade.
 Picea excelsa, Grene med Bladar, Naale, Fro.
 Taxus baccata, enkelte Fro.
 Alnus glutinosa, talrige Frugter og en Hanrakle.
 Betula odorata, to vingede Frugter og et lille Hunrakleskæl.
 Carex pseudocyperus.
 — sp.
 Carpinus betulus, enkelte Nodder.
 Ilex aquifolium, en Bladtorn.
 Lycopus europaeus, to Frugter.
 Nuphar luteum, talrige Fro.
 Potamogeton natans, Stene med Frugtkod.
 — *obtusifolius*, Frugtstene.
 — *perfoliatus*, —
 — *praelongus*, —
 Quercus sp., en lille Gren med Bladar.
 Rubus idaeus, en Frugtsten.
 Rumex sp., en Frugt.
 Scirpus sp., talrige smaa Frugter med lange Børster.
 Sparganium sp.
 Typha sp.

3. Hypnumtorv; 1,25—1,75 m. under Torvens Overflade.
 Oligochæt—Kapsler.
 Castor fiber, gnavede Grangrene.
 Frankia alni, en Drueklase—lignende Dannelse, 1,5 cm. i Tværsnit.
Hypnum prælongum, torvedannende.
Neckera complanata.

— crispa.
Polytrichum sp., bladløse Stængler.
Lastrœa thelypteris, Blade.
Picea excelsa, talrige Blade, Grene og Fro.
Taxus baccata, en Gren med 12 Blade.
Acer sp., en vingeløs Frugt.
Alnus glutinosa, Han- og Hunrakle.
Betula alba, en Frugt og talrige Grene.
Carpinus betulus, talrige Frugter.
Ceratophyllum demersum, enkelte tornløse Frugter.

Quercus sp., et fragmentarisk Blad, Barkstykker, Grene.
Rubus idæus, talrige Stene.
Sparganium ramosum, talrige Stene.

Hypnumtorven var pletvis saa opfyldt af Lastrœa thelypteris, at den kan betegnes som en Bregnetorv; i Prover af denne fandtes:

Graphis scripta, meget smukt og tydeligt udviklet paa Birkebark (det. E. R.).

Hypnum velutinum.

Lastrœa thelypteris, Rhizomer, Rodder, Blade, Sporangier, torvedannende, Tavle IX, Fig. 8—11.
Alnus glutinosa, Hunrakler og Frugter.
Betula odorata, Bark, Hunrakleskæl.

Corylus avellana, talrige Stene.

Lycopus europaeus, talrige Depungler.

Menyanthes trifoliata, talrige Fro.

Quercus sp., Bark og Grene.
Rhamnus frangula, enkelte Fro.

Rubus idæus, talrige Frugtstene.
Salix cfr. caprea, et enkelt stort Blad.
Sparganium ramosum, en Frugtsten.
Tilia sp., et Axelblad.
Vaccinium uliginosum, Blade.

Prof. G. Lagerheim fandt ved en mikroskopisk Analyse:
Lastræa (Polystichum) thelypteris, Sporangier og Sporer
ikke sjældne.
* Lastræa cristata, Sporer.
* Pinus silvestris
Alnus sp.
Corylus avellana

Pollen.

Brønd IV og V.
I to Brønde, som jeg i 1899 lod grave i den østlige Udkant af Mosen (et Par Meter Øst for den lille Markvej, der fra P. Hummelgaard's Boelssted fører mod Nord), var Gytjelaget meget smukt udviklet og Vandforholdene saa heldige, at jeg kunde komme helt ned til Møreneleret og endda lidt ned i dette. Profilet var:

0,30 m. Muld.
0,80 - Ahl, meget haard.
0,50 - Torv (a).
0,10 - . Gytje (b).
0,50 - + Blaat stenet Ler, typisk Moræneler.

Mulden var aabenbart en formuldet Sphagnumtorty og dens Underlag, meget mindende om Gunnaar Anderson's fet-torf (1898, S. 23).
Ved en mindre Gravning, foretaget Septbr. 1906, faa Meter fra disse to Brønde, fandt jeg i Ahlen 3 ret store Sten, flade Kvarsitter, af hvilke den ene laa paa Fladen, de to andre paa Hojkant. Disse Sten maalte:

30 × 20 × 6 cm.
40 × 25 × 18 cm.
50 × 52 × 20 cm.

Acer sp., en Froskal.
Alnus glutinosa, Frugter.
Carex spp., Frugtter uden utriculus.
Lycopus europæus, 1 Delfrugt.
Polanogelon sp., Frugtstene.
Rubus idæus, —
Sparganium ramosum.
— sp.

a. Torven var meget stærkt foldet og sammenpresset, dannet af Sphagnum; Foldningen var aabenbart kraftigst her i Udkanten af Mosen. Der fandtes meget Dopplerit i Spalter i Torven, der forøvrigt var temmelig fattig paa Plantester:

Lastreæ thelypteris, Rodstokke, Rodder, Blade og Sporangier.
Alnus glutinosa, Frugtter og Hunrakler.
Betula odorata, enkelte Hunrakleskæl.
Calluna vulgaris, Rodder, Grene og Frugtter.
Enodium coeruleum, Rodstokke med Bladbaser.
Eriophorum vaginatum, Tuer i Mængde.
Fraxinus excelsior, enkelte Frugtter.
Oxyccoccus palustris, Stængler og Blade.
Vaccinium uliginosum, talrige Blade.

b. I den sorte, faste, „bladede“ Gytje fandtes en rig og interessant Flora:

Dyr: Donacia (Plateumaris) micans Amr., Vingedækker.
Planter: Cenococcum geophilum, talrige smaa Kugler (0,5—1,0 mm.).
Sphagnum sp., Kapsler.
Lastreæ thelypteris, velbevarede Smaablade i Mængde.
Picea excelsa, talrige Rester.
Taxus baccata, et Fro.
Alnus glutinosa, enkelte Frugtter.
Betula odorata, rullede, afbarkede Pinde, fladtrykte og helt baandformede, enkelte Hunrakleskæl og talrige vingelose Frugtter.
Brasenia purpurea, talrige Fro af vekslende Størrelse.
Carex filiformis.
— pseudocyperus.
— sp.
Carpinus betulus, Frugtter.
Ceratophyllum demersum, talrige Frugtter, enkelte med vel-
bevarede Tornæ.
Comarum palustre, en Frugt.
Dulichium spathaceum, talrige Frugtter.
Fraxinus excelsior, Frugter og Fro.

Hydrocharis morsus ranae, 8 Fro, Tavle IX, Fig. 14.

Lycopus europaeus, talrige Frugter.

Menyanthes trifoliata, Fro.

Najas marina, 5 Frugter.

Nuphar luteum, talrige Fro.

Nymphaea alba, talrige Fro, de fleste fladtrykte.

Oxycoecus palustris, en bladbærende Gren.

Phragmites communis, et enkelt Stængelstykke.

Polygonum lapathifolium, Frugter med Borster (Bægerbladdenes skeletterede Ribber), jfr. Tavle XII, Fig. 20.

Potamogeton natans, talrige Frugtstene og et velbevaret Blad.

— prælongus, en enkelt Frugtsten.

Quercus pedunculata, talrige Blade og Smaagrene.

Rhamnus frangula, et Fro.

Sparganium ramosum.

— sp.

Stratiotes aloides, enkelte Fro.

Typha sp., talrige smaa Frugter, til Dels med af Borster.

Viola palustris, et enkelt Fro.

Overgangslaget mellem Sphagnumtorven og Gytjen var en ejendommelig sort, jordagtig, smuldrende Masse (en Strandgytje eller Stranddy), tæt pakket med Fro af Brasenia, Nymphaea, Potamogeton og andre Vandplanter. For at give Indtryk af dette Lags store Rigdom paa Fro og de enkelte Arters relative Antal sigtede jeg en lille Prøve af det tørt gennem en Sigte med Maskevidde c. 1,5, mm. og fandt deri:

120 Fro af Brasenia purpurea.
53 Frugtstene af Potamogeton natans.
52 Fro af Nymphaea alba.
13 vingeløse Frugter af Betula.
12 Frugter af Carex.
2 Frugtstene af Sparganium.
2 Frugter af Typha (de fleste gik gennem Sigten).
1 Fro af Menyanthes.
1 Frugt af Lycopus (de fleste gik gennem Sigten).

Ved en mikroskopisk Undersøgelse af Gytjen (b) fandt Prof. G. Lagerheim:

* Spongilla lœnstris, spicula.
* Anabæna cfr. Lemmermanni.
* Botryococcus Braunii.
* Gloeotrichia sp. (ikke sjælden).
* Staurastrum sp.
* Lastræa (Polystichum) thelypteris, Sporangier og Sporer almindelige.
* Pinus silvestris
 Alnus glutinosa
* Caryophyllace
* Corylus avellana
* Graminæ
 Quercus sp.
* Typha latifolia
* Ulmus sp.

Fra Mosen paa Tuesbol Mark kendes derefter følgende Dyr og Planter i alt c. 100 Arter; naar der kun er fundet Pollen af vedkommende Art, er denne betegnet med * i Listen:

<table>
<thead>
<tr>
<th>Tuesbol Mark</th>
<th>Brønd I</th>
<th>Brønd II</th>
<th>Brønd III</th>
<th>Brønd IV—V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sph. 1</td>
<td>Great. 2</td>
<td>Hypn. 3</td>
<td>Sph. a</td>
</tr>
</tbody>
</table>

Dyr:
- Amphilectra flavum
- Spongilla lacustris
- Cristatella mucedo
- Oligochaeta, Ægkapsler
- Anchomenus moestus
- Cecidomyia alni
- Donacia affinis
 - nicans
 - sp.
- Oodes helioioides
- Phryganæ, Larvehylstre
- Castor fiber
- Ceridæ (Cerous damacLib

Planter:
- Anabaena cfr. Lemmermanni
- Botryococcus Braunii
<table>
<thead>
<tr>
<th>Species</th>
<th>Brond I</th>
<th>Brond II</th>
<th>Brond III</th>
<th>Brond IV—V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chara sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gloeotrichia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pediastrum angulosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staurostrum sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Armillaria mellea</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenococcum geophilum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Coniothecium sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Entorrhiza vaccinitii?</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankia alni</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Mycorrhiza sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphis scripta</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Acrocladium cuspidatum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hylocomium triquetrum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypnum praelongum</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>— velutinum</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Neckera complanata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— crispa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pohlia (nuta.??)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytrichum juniperinum</td>
<td>+</td>
<td></td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>— strictum</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum cymbifolium</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— papillosum</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stereodon cupressiformis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lastrea cristata</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— thelypteris</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Osmunda regalis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea excelsa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>Taxus baccata</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acer sp.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ajuga reptans</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Taxon</td>
<td>Brand I</td>
<td>Brand II</td>
<td>Brand III</td>
<td>Brand IV-V</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Betula alba</td>
<td>+ +</td>
<td>+ +</td>
<td>+ + + + + +</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>— subalpina.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— odorata</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidens tripartitus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Bracteae purpurea</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex filiformis</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— pseudocyperus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpius betulius</td>
<td></td>
<td>+ +</td>
<td>+ + + +</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratophyllum demersum</td>
<td></td>
<td></td>
<td>+</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>Comarum palustre</td>
<td></td>
<td></td>
<td>+</td>
<td>+ + + + +</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>+ +</td>
<td></td>
<td>+ *</td>
<td>+ +</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>+ +</td>
<td></td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>Empetrum nigrum</td>
<td>+ +</td>
<td></td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>Enodion coeruleum</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Eriophorum caespitatum</td>
<td>+ +</td>
<td>+ +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td></td>
<td>+ +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Gramineae</td>
<td></td>
<td>+ +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Hydrocharis morsus rana</td>
<td></td>
<td>+ +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ilex aquifolium</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopus europaeus</td>
<td>+ +</td>
<td></td>
<td>+ + +</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>Mentha intermedia</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Najas marina</td>
<td>+ +</td>
<td></td>
<td>+ + + +</td>
<td>+ + + +</td>
</tr>
<tr>
<td>Nuphar luteum</td>
<td>+ +</td>
<td></td>
<td></td>
<td>+ + + + +</td>
</tr>
<tr>
<td>Nymphaea alba</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxyccoccus palustris</td>
<td>+ +</td>
<td></td>
<td>+</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>Phragmites communis</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Polygonum lapathiformis</td>
<td></td>
<td></td>
<td>+ + + +</td>
<td>+</td>
</tr>
<tr>
<td>Potamogeton acutifolius</td>
<td>+ +</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>— filiformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— natans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— obtusifolius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— perfoliatus</td>
<td></td>
<td></td>
<td>+</td>
<td>+ + + + + +</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Potamogeton polygonifolius</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— praelongus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— trichoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— zostericolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus pedunculata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnus frangula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix cfr. caprea</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scirpus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— ramosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratiotes aloides</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilia grandifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typha latifolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinium uliginosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mose ved Skovlyst Syd for Brorup.

I Efteraaret 1898 foretog jeg en Gravning paa Marken tæt Sydøst for Skovlyst, paa det med X paa Kortet Fig. 17 betegnede Sted, hvor Ejer, Proprietæer FRITZ MOMSEN for lang Tid siden, som ovenfor Side 139 nævnt, ved en Brondgravning havde fundet Torv flere Alen under Markens Overflade. Profilnet viste:

0,25 m. Muld.
0,25 - Ahl.
1,25 - hvidgraat Sand med faa Sten.
0,45 - "Overslag".
0,75 - Torv (A—C).
0,10 - Gytje (D).

Blaat, sandet Ler med Sten (Moræneler).
"Oversgangslaget" var brunligt, lerholdigt Sand, blandet med udtværet Torv og enkelte små Sten indtil 3–4 cm. Størrelse; enkelte større Torvebrokker, der var sorte og ganske formulde, indeholdt en Del Birkebark og små Cenococcum-Kugler, ellers intet.

Torven delte jeg i 3 Lag (A–C), hvert af 25 cm. Tykkelse; de de gennemgaaes her fra oven nedad.

A. 0–25 cm. under Torvens Overflade. Sammenpresset Sphagnum-torv, overst formuldet, længere nede frisk og uformuldet, meget rig paa Eriophorum-Bladrest og gennemvævet af Calluna-Rodder. Torven var meget stærkt foldet, dens Lagflader ofte sorte, og den var meget fattig paa bestemmelige Planterester; foruden Cenococcum saa jeg kun en Del Birkegrene i dette Lag.

B. 25–50 cm. under Torvens Overflade. En mørk Amblystegiumtorv med talrige Phragmites-Rhizomer, Carex-Rester og Lastræa-Rodder.

Donacia (Plateumaris) micans Ahrens.
Amblystegium (? Kneissji).
Sphagnum sp., et Kapsellaag.
Lastræa thelypteris, Rhizomer, Rodder og Bladstilke.
Carex filiformis, talrige Frugter.
— pseudocyperus, talrige Frugter.
Cladium mariscus. Frugter.

Fig. 17. Mosen ved Skovlyst (X).
(1:20,000, Kurvernes Equidistance 5' = 1.57 m).
Comarum palustre, talrige Frugter og lange, mørke Rhizomer, indtil 11—12 cm. lange.
Lycopus europaeus, enkelte Delfrugter.
Menthanthes trifoliata, talrige Kro.
Populus tremula, et stort, smukt Blad (Tavle VII, Fig. 17).
Phragmites communis, talrige Rhizomer.
Quercus sp., Blade og en enkelt Nød.
Typha sp., talrige Frugter.

Ved en mikroskopisk Analyse af Torven fra Lag B fandt Prof. G. Lagerheim Pollen af
 * Picea excelsa, sjælden.
 * Pinus silvestris.
 * Alnus sp.

C. 50—75 cm. under Torvens Overflade. Amblystegiumtørv som B, nedad gaaende jævnt over i Gytje; foruden de under B nævnte Planter fandtes:
 Ceratophyllum demersum.
 Nuphar luteum.
 Nymphéa alba.
 Potamogélon sp., talrige Frugtstene.

D. Det tynde Gytjelag var sandblandet, mørkfarvet og indeholdt følgende Planter:
 Chara sp., Oogonier.
 Amblystegium giganteum.
 Betula subalpina, talrige Hunrakleskæl, alle smaa.
 Carex pseudocyperus.
 Ceratophyllum demersum, talrige Frugter, enkelte med velbevarede lange Torne, de fleste tornlose.
 Nuphar luteum, fladtrykte Kro.
 Nymphéa alba, talrige fladtrykte Kro.
 Potamogélon obtusifolius.
 — perforíatús.
 Scirpus lacustris.
 Sparganium ramosum.
 Typha sp., talrige Frugter.
 Viola palustris, et enkelt Kro.

Mosens stratigrafiske Forhold viser, at den er jævnaldrende med de andre interglaciale Moser i denne Egn. Men det fortjener at bemærkes, at jeg i denne Mose hverken fandt Grannaale, Avnbøgenodder
eller andre interglaciale (diluviale) Ledefossiler; først ved den af Prof. Lagerheim foretagne Pollen-Undersøgelse fandtes Gran.

Mose ved Hulkjær Vandmølle.

Nuværende Generalmajor F. Wagner besogte i August 1873 Hulkjær ved Holsted Aa, c. 5,5 km. Nordvest for Brørup for at undersøge de „Brunkullag“, der ifølge Meddelelse fra Folkethingsmand H. Termansen skulde findes der, c. 2 Alen (1,25 m.) under Jordoverfladen; Kullaget skulde efter samme Kilde have en Tykkelse af c. 2\(\frac{1}{2}\) Alen (1,6 m.).

Den Dagbog, Ur. Wagner den Gang lorte og som han velvilligst har overladt mig til Benyttelse, meddeler, at der nævnte Dato fandtes „de formentlige Brunkul“ i godt 2 Alens (1,25 m.) Dybde, uden at dog Lagets Mægtighed kunde undersøges nærmere, da Hullet hurtigt løb fuldt af Vand. I et andet Hul fandtes „Brunkullene“ i mindre end 1 Alens Dybde; Laget var her kun c. \(\frac{1}{4}\) Alen (16 cm.) tykt, tydelig lagdelt og fuldt af Trædele; desuden fandtes Frø af Fyr? og Vingedækkere af en grøn Bille. Strukturen var kulagtig. „Kullene“ kunde tændes, men lugtede meget svovlet og havde ringe Sammenhæng; det tidligere fundne „Kul“ var mere svampet og torveagtigt. Paa den anden Aabred fandtes ingen „Brunkul“.

I August 1898 besogte jeg samme Lokalitet; Hr. Proprietær Fritz Momsen, Skovlyst, meddelte mig nemlig, at der skulde være fundet „Brunkul“ ved Vandmøllen, og Ejeren af en næriggende Gaard fortalte, at „for 30—40 Aar siden havde man ved Gravning et Par Alen Vest for Vandmøllens Stuehus fundet Torvejord, der var betydelig fastere end almindelig Torvejord, brun, „bladet“ og fyldt med Birkebark eller lignende.“

Jeg foretog en Gravning tæt Vest for Stuehuset, ved Aabredden, og fandt:

2,9 m. Sand.

c. 0,5 - sandet, lagdelt, brun Tørv med talrige Grene og Pinde, alle med Bark, ikke rullede.

Underlaget under Mosen kunde ikke naaes paa Grund af Vandtilstrømning.

I Torven fandtes:

*Phytophucleid*er, talrige lostliggende Galler fra Elleblade. *Donacia (Plateumaris) affinis* Kunze.
Frankia alni, paa Ellerødder.
Hypnum lutescens.
Neckera complanata.
Alnus glutinosa, talrige ♂- og ♀-Rakler og Frugter.
Betula alba, 2 vingeløse Frugter.
Carex pseudocyperus, talrige smaa Frugter med utriculus.
Corylus avellana, enkelte Nodder.
Cornus sanguinea, 1 Frugtsten.
Hippuris vulgaris, 1 Frugtsten.
Lycopus europæus, 5 Delfrugter.
Nuphar luteum, enkelte Fro.
Potamogeton perfoliatus.
— trichoides?
Quercus pedunculata, Blade, Kviste, Bark, 1 Frugt.
Ranunculus repens.
Rubus idæus.
Rumex sp.
Scirpus lacustris, Frugter.
Sparganium euramo, Frugtstene.
— sp.
Typha sp., talrige Frugter.
Viburnum opulus, 1 Fro.

Ellerester var fremherskende i denne Torv; et Egeblad var særdeles vel bevaret og viste en udpræget „øret“ Basis.
Jeg fandt ingen Spor af Gran eller andre interglaciale Ledefossiler, men tvivler dog ikke om, at Mosen er jævnaldrende med de andre Moser; Pollen-Undersøgelse er ikke foretaget.

Mose paa Lervad Mark.

Paa Lervad Mark, 4 km. SV. for Brørup, nær den sydlige Rand af Tislund Bakkeø, gravede jeg i 1898 to Brønde ned til en lille Mose, paa Kortet Fig. 18 betegnet med et Kryds nær Kortets nordøstlige Hjorne; over Mosen saas den sædvanlige Fordybning. Profilet viste:

2,60 m. Sand.
0,30 - „sort, fedt Sand“, „Overgangs slag“.
0,15 - Sphagnumtorv.
0,15 - sandet Gytje.
1,30 - Sand.
Fig. 18. Mosen paa Lervad Mark (X).
(1:20,000: Kurvernes .Equidistance 5' = 1,57 m).

I det „sorte, fede Sand“ over Torven fandtes enkelte Cenococcum-Kugler. I Sphagnuntorven fandtes:

Ekskrementer (af Cervus dama?), Tavle VI, Fig. 11.
Cenococcum geophilum, store, 2—3 mm. i Diameter.
Lastraea thelypteris, enkelte Snaablade.
Picea excelsa, Fro, Naale; en hel lille Kimplante, 4,5 mm. lang, med 4 kransstillede Blade. Mange af Naalene meget smaa (5—6 mm. lange), nogle dog ogsaa af normal Storrelse.
Taxus baccata, talrige Fro; paa enkelte af disse saas forkullede Rester af Frokappen.
Alnus glutinosa, en enkelt Frugt.
Betula odorata.
Bidens tripartitus, Frugter med Torne.
*Carex pseudocyperus.
— sp.
Carpinus betulus.
Comarum palustre, talrige Rhizomer og Frugter.
Corylus avellana, Nodder.
Fraxinus excelsior, enkelte Frugter.
Lycopus europaeus, enkelte Delfrugter.
Menyanthes trifoliata, talrige Fro.
Oxycoccus palustris, Stængler og Blade.
Quercus sp., et fladtrykt Agern.
Rhamnus frangula, et Fro.
Salix cfr. caprea, Blade.
Sparganium sp.
Viscum album, Frugter.

Paa Övergangen mellem Sphagnumtorven og Gytjen fandtes et tyndt Lag Mosser, hovedsagelig *Hylocomium proliferum*, og her var Torven ofte dannet udelukkende af Grannaale og andre Granrester; heri Frugtstene af *Potamogeton densus*.

I Gytjen fandtes, foruden de ovenfor nævnte Planter, talrige Vand- og Sumpplanter:

Calla palustris, talrige Fro.
Ceratophyllum demersum, talrige Frugter.
Cornus sanguinea, en Frugtsten.
Dulichium spathaceum, talrige Frugter; paa en enkelt Frugt var hele Griffen bevaret (Tavle VII, Fig. 13—16).
Hippuris vulgaris, to Frugtstene.
Lycopus europaeus, enkelte Delfrugter.
Nuphar luteum, et stort, rhombisk Bladår (2 × 0,8 cm.) og Fro.
Phragmites communis, Rhizomer.
Potamogeton condylotinus T AUSCH.
— *Friesii* RUPR.
— *natans* L.
— *pusillus* L.
Salix cfr. caprea, Blade.
Typha sp., enkelte Frugter.

Mose i Bramminge.

I Bramminge Stationsby gravede jeg 1899 to Brønde i en og samme Mose, den ene i Hotel Kikkenborgs Gaard, den anden umid-
delbart Syd for Banelinjen, lige Vest for Landevejens Skæring med denne.

1 den første Brønd var Profilet:

0,15 m. Fyld.
1,60 - Sand.
2,60 - Torv.

Gytjeholdigt Sand; Vandtilstrømning forhindrede videre Gravning.

1 den anden Brønd var Profilet:

2,60 m. Sand.
2,30 - Torv.

Sand. Ifølge mundtlig Meddelelse fra Hotelejeren, Hr. Sørensen, er Underlaget under Mosen „Ler med Rullestens", altsaa vel Moræneler.

Paa Grund af Opfyldning var Fordybningen i Terrænet over den interglaciale Mose ikke mere synlig. Torven var som sædvanlig Sphagnumtorv, pletvis dog hovedsagelig dannet af Polytrichum commune. Her fandtes følgende:

Oligochet-Kokoner.
Cecidomyia alni, Phytophtoececidier, lostliggende i Torven.
Donacia (Platenmaris) micros.
Cenococcum geophilum, talrige store (2—3 mm.) Kugler.
Hylocomium proliferum.
Neckera crispa.
Polytrichum commune, store, smukke Stængler af 15 cm. Længde; enkelte Sporchus-Hætter.
Sphagnum sp.
Lastrea thelypterus, velbevarede Smaablake.
Osmunda regalis, Rhizomer, Rødder, Blade og Sporangier.
Pinus silvestris, en Dværggren med korte, knap 2 cm. lange Naale; Barkstykker og 3 Kogler (2,5—3 cm. lange).
Picea excelsa, Stammer, Grene, Naale, Kogler, Fro, Bladknopper.
Alnus glutinosa, hele Hanrakler og talrige Frugter, Grene.
Betula odorata, Bark, Grene, smaa Frugter og Hunrakleskæl.
Calla palustris, enkelte Fro.
Callitriche autumnalis, enkelte Delfrugter (Tavle VII, Fig. 8).
Carex sp., flade Nødder.
Carpinus betulus, talrige Nødder.
Corylus avellana, 1 Nød, musegnavet.
Eriophorum vaginatum, Tuer.
Oxalis acetosella, enkelte Fro.
Rubus idæus, enkelte Frugtstene.
Typha latifolia, talrige Frugter.

Picea: Flere kraftige, ranke Stammer, der laa paa tværs i Brøndene, var saa haarde, at vi maatte benytte Sav og Oxe for at komme videre i Bronden. Grannaalenes Størrelse varierede fra 1—2,3 cm. Længde, med alle Størrelser mellem disse to Ydergrænser. Naalene var usædvanligt smukt bevarede, ikke fladtrykte, som det saa ofte er Tilfældet i den interglaciale Torv. Jeg hjembragte 10 Kogler herfra (T. X, Fig. 1—2); 3 af disse viste følgende Maal; de andre Koglers Dimensioner laa mellem disse:

1. Ikke fladtrykt, 8 cm. lang, 3 cm. i Tværsnit.
2. Lidt — , 10 - — , 3 - - — .

Nogle af Koglerne er sønderplukkede af en Spætte (Picus sp.).
Det fortaltes mig, at man ved Brøndgravninger havde fundet Torv paa flere andre Steder i Bramminge By.

Boringer ved Vejen Stationsby.

De i firkantede Klammer tilføjede Fortolkninger af Borejournalens Angivelser er Doc. J. P. J. Ravns Bemærkninger i Borearkivet efter hans Gennemgang af de indsendte Boreprover.

0,3 m. Muld.
3,3 - Ler.
0,3 - Grus og Sten.
1,5 - Sand og Ler.
11,6 m. Sand, Ler og smaa Sten.
14,0 - Sand og Ler.
6,5 - Sand, vandforende.
2,2 - Sand med „Trækul”.
5,3 - Sand med meget „Træ”.
6,3 - Sand, vandforende.

31,5 m.

Jeg har set en lille Prøve af „Trækullene” fra c. 40 m. Dybde; den bestod af meget komprimeret Torv.

0,3 m. Fyld.
3,1 - Stenet Ler.
1,2 - Sandet og stenet Ler.
1,9 - Sand med Lerrevle.
1,2 - Sand og store Sten.
2,8 - Leret og stenet Sand.
0,3 - Skarpt, stenet Sand.
1,9 - Skarpt Sand, meget stenet.
4,4 - Grus, meget stenet.
0,3 - Fint, stenet Sand.
1,9 - Sand, leret og stenet.
1,9 - Fint Sand, lidt vandforende.
4,7 - Fint Sand.
1,9 - Sand, lidt skarpere end ovenfor.
1,9 - Skarpt Sand.
3,8 - Fint Sand.
0,8 - Sand og en Mængde Træ.
0,8 - Sand og Træ.
0,6 - Sand og lidt Træ.
1,9 - Sand og Træ og lidt sort Ler.
2,2 - Sand og Træ.
2,5 - Sand og lidt Træ.
1,6 - Stenet Sand.
5,0 - Sand, vandforende.

48,8 m.

„Træet” er komprimeret Torv med Træstykker, i en Dybde af c. 34—43 m. under Overfladen. I Torven fandtes ved Stænning:

Picea eller *Pinus*, 2 Frovinger, fragmentariske.
Betula alba, 2 vingeløse Frugter.
Menyanthes trifoliata, 1 meget fladtrykt Fro.

1,0 m. Torv.
6,6 - Sand, fint, vandforende.
0,9 - Ler, sandblandet.
7,5 - Mergel [Moræneler.]
12,0 - Sand, mere eller mindre vandforende.
0,9 - Sand, fint.
1,3 - Blaaler [Moræneler eller lagdelt Diluvialler.]
3,1 - Sand, vandførende.
1,9 - Sand, lerblandet.
1,5 - Ler, sandblandet.
6,2 - Sand, ler- og stenblandet, vandførende.
1,2 - Blaaler [Moræneler.]
0,6 - Sand, lerblandet, lidt vandførende.
7,9 - Sand, rødt, til Dels lerblandet.
1,2 - Sand, lidt vandførende.
0,6 - Ler.
3,8 - Sand, vandførende.
0,6 - Glimmersand med Træstumper. [Tertiært.]
1,9 - Sand, vandførende.

60,7 m.

Boring IV, Vejen. Vejen Fiskeriselskab, 1903, c. 30 m. Afstand fra Boring III (Mineralogisk Museums Borearkiv H. 4. 5. b).

0,6 m. Muld.
6,5 - Grus, skarpt, lerblandet.
6,2 - Blaaler, [Moræneler.]
0,6 - Sand, sort, lerblandet, med "Træstykker" ‡: Torv.
4,7 - "Brunkulsler" med Sandrevler.
1,5 - "Brunkul" ‡: Torv.
3,1 - Sand, lerblandet.
3,4 - Sand, lidt vandførende.
0,6 - "Brunkul" ‡: Torv.
1,6 - Sand, vandførende.
1,0 - Sand, fint, lidt vandførende.
1,5 - Blaaler [Moræneler eller lagdelt Diluvialler.]
5,6 - Sand, fint, lerblandet, lidt vandførende.
0,6 - Sand, fint, lidt vandførende.
3,5 - Sand, rødt.

40,3 m.
Prover fra Boring IV undersøgtes i Dechr. 1903; alt. hvad der i denne Boring betegnes som „Brunkul“, er komprimeret Tørv.

c. 13—14,5 m. under Overfladen: *Potamogeton* sp.

16,5—17,6 - - - : Sand med Tørv og Træstykker.
17—18,5 - - - : Sand med Tørv og Træ; 1 *Carex*-Frugt uden utriculus.

19—20 - - - : Meget komprimeret Tørv med 2 Stene af *Hippuris vulgaris* og talrige Frugter uden utriculus af *Carex* sp.

26—27 - - - : Komprimeret Tørv med *Cenococcum geophilum*, 1 Eksemplar.

Af stor Interesse er det, at der her synes at ligge 3 Moser over hinanden — et Forhold, som også kendes andetsteds fra (WEBER, Holsten), og som svarer til de over hinanden liggende Brunkul- og Stenkullag.

Boring V. Vejen. Vejen Mejeri, 1907. (Mineralogisk Museums Borearkiv H. 4. 8).

5,6 m. Brønd.	0,6 - Grus og Sten [fluvioglacialt Grus?]
9,4 - Stenet Ler.	[Moræneler.]
6,2 - Ler, Sandklæg.	2,9 - Sandklæg med Træ iblandt.
6,6 m. Skarpt Grus, lidt vandforende.	1,2 - Træ.
2,9 - Sandklæg med Træ iblandt.	3,3 - Fint Sandklæg med Træ iblandt.
1,2 - Fint, hvidt Sand.	9,7 - Sand, vandforende, lidt skarpe end ovenfor.
46,8 m.	[Fluvioglacialt Sand og Grus, muligvis 31—32,5 m. interglacial Tørv.]

Jeg har undersøgt Prover af „Træet“, som viste sig at være komprimeret Torv, hvori fandtes:

Pinus silvestris, 1 Kogleskæl.
Betula alba, Frugter.
Carex pseudocyperus, 1 Frugt.
Carex sp. (uden utriculus), 1 Frugt.
Menyanthes trifoliata, 2 Frø.
Nuphar luteum, 3 Frø, fladtrykte.
Scirpus sp. (*lacustris*?), 1 Frugt.
Boring ved Askovhus pr. Vejen, 1897. (Mineralogisk Museums Borarkiv H. 4. 2).

0,3 m. Muld.
0,3 - Sand og Sten.
3,5 - Ler og lidt Ahl.
1,9 - Sand, vandførende.
4,4 - Ler med Smaaesten.
0,3 - Sand.
2,5 - Sand med tynde Ahllag.
3,1 - Sand med Smaaesten.
3,5 - Skarpt Sand med Sten.
0,3 - Meget fint Sand. [Efter Proven som foregaaende, men uden Sten.]
2,2 - Skarpt Sand med mange Sten.
7,0 - Sand med „Koraller“. [Efter Proverne i Reglen uden Sten.]
3,5 - Fint Sand med Smaaesten. [Efter Proven lidt lerblandet.]
14,5 - Ler og Sand. Fint.
1,0 - Sand med Sten. Grovt.
0,8 - Meget fint Sand. Finere.
1,3 - Sand med tynde Lag Lerskifter.
5,3 - Sand.
1,6 - Sand med lidt Ler.
1,2 - Sand.
1,2 - Meget fedt blaat Ler. [Moræneler.]

59,5 m.

I 1897 blev der — ifølge mundtlig Meddelelse til mig fra Prof. la Cour, Askov — foretaget en dyb Boring ved Askov; ved denne fandtes en „bladet, presset Tørv“ i betydelig Dybde; det har sikkert været ovenstående Boring. Desværre indeholder Bore-Journalen ingen Oplysning om denne Torvs Beliggenhed, og de til Museet indsendte Prover indeholdt ingen Tørv.

0,9 m. Fyld.
2,9 - Rodler.
7,3 - Blaaner med Sandrevler. [Moræneler, muligvis med mellemliggende Diluvial-sand og -Grus.]
2,5 - — - Sten og Sand.
7,5 - Blaaner med Sten og Sandrevler.
1,7 - Sandblandet Ler. [Diluvialler, stenfrit.]
1,0 - Sand og „Træ“. 31 m. synes der at være Overgang til rent Kvartssand, som udgor 31
5,3 - Sand, meget vand-førende. —35 m. og muligvis er tertiært.
35,3 m.

Jeg har ikke set Torveprover herfra, men det blev mig fortalt paa Ladelund, at man havde fundet Torv ved Brøndboringen.

Andre Moser i Nærheden af Brørup.

Foruden de tidligere omtalte forekommer der i Nærheden af Brørup talrige interglaciale Moser, som jeg har konstateret ved Gravning eller Boring. Brøndgraveren i Brørup angav ligeledes at have fundet Torv ved Gravning paa flere Steder langs Vejen fra Brørup til Foldingbro, paa Strækningen mellem Jernbanelinjen og Harebjerg, i vekslende Dybder, indtil 10 m under Overfladen.

C. 700 m. VSV for den S. 140—160 udførligt omtalte Mose i Brørup Stationsby gravede jeg i 1899 i en flad Lavning i Terrænet to Brønde og fandt Torv i 5—6 m. Dybde under stenfattigt Sand; Ahlen var her ikke mindre end 1,25 m. tyk.

I en anden nærliggende Lavning gravede jeg en Brønd med følgende Profil:

6,30 m. Sand, lagdelt, stenfrit.
0,20 - Torv.
0,05 - Gytje.
1,70 - Sand, temmelig grovt.

Torven var her som sædvanlig en meget sammenpresset Sphagnumtorv med Rester af Eriophorum, Oxyccocus-Stængler, enkelte Egblade og Donacia-Vingedækker. I det tynde Gytjelag fandt jeg kun enkelte Potamogeton-Stene; over Torven forekom som sædvanligt en sort eller brunlig, muldliggende, „fedtet“ Blanding af Torv, Ler og Sand med talrige cylindriske, lodrette Hulheder efter forsuvnede Rodder af ?. Torven selv var ganske tor.

Straks Nord for Brørup Station, tæt Vest for Hovedlandevejen, borede jeg til en Mose, der lå c. 3 m. under Markens Overflade. Sandlaget over Mosen var saa vandrigt, at Boret næsten faldt igen-nem den nederste Meter Sand, saa at det vistnok vilde have været forbundet med store Vanskelsigheder at faa en Brond til at staa.

Paa Markvejen fra Brørup Stationsby til P. Hummelgaard’s Boels-sted paa Tusbol Mark fandt jeg ved Boring i 1,3 m. Dybde et Torvelag
af 2 m. Tykkelse og derunder atter Sand (paa Kortet Fig. 15, S. 140 betegnet med et Kryds og 2).

Endelig viste en Boring i den lille Mose lige Øst for P. HUMMELGAARD’s Boelssted (se Kortet Fig. 15) Torv i 3 m. Dybde under Jordoverfladen, men Sandet over Torven var saa vandfyldt, at jeg ikke vilde forsøge at grave Brønd.

Ved Landevejen lige overfor Malt Kirke er der ifølge Angivelse af Brondgraveren fundet Torv med talrige Hasselnodder. Jeg besøgte Stedet i 1899; der fandtes den sædvanlige Lavning over Mosen.

Ved Tislund (nye) Skole, umiddelbart Syd for Jærnbanelinjen, hvor Tislund—Folding-vejen skærer denne, gravede man i 1899 en Brønd, som gik igennem en interglacial Mose; den sædvanlige flade Lavning saas over Mosen.

Jeg kom først til, da Brønden var gravet; i den opkastede Torv fandtes intet af særlig Interesse; det var en Sphagnum-Torv af den sædvanlige, faste Beskaffenhed, med Egeblade, en stor Mængde Spar- ganium ramosum-Frugtstene, hvoriblandt enkelte „Dobbeltstene“ (Tavle IX, Fig. 15) og en Del Potamogeton-Frugtstene (P. trichoides, det. I. P.).

Efter Angivelse af Folk paa Stedet fandt man i Tislund omkring 1840 Torv i 38 Alens (c. 24 m.) Dybde, ved en Gravning lidt Øst for den nuværende Skolebygning, men Nord for Banelinjen.

Pastor Feilberg i Askov, som i Tredserne var Præst i Brørup, har meddelt mig, at der ved en Brondgravning i Bryggerset paa Gravngaard fandtes Torv dybt nede i Bronden.

Lundtofte. I 1905 fandt V. NORDMANN en interglacial Mose ved Lundtofte, c. 950 m. VNV. for Bækhollling Præstegaard, Syd for Holsted Station; Terrænhøjden er c. 137’ (c. 43 m.) o. H. Mosen var ifølge Meddelelse fra Statsgeolog A. JESSEN dækket af 0,6—1,0 m. Sand, der især i dets nederste Partier indeholdt talrige nodde- til haandstore Sten, af hvilke mange var sandslide og polerede. Imellem Sandet og Torven lå et tyndt Lag mørktfarvet, „fedtet“ Sand. En postglacial Mose har — i hvert Fald til Dems — udfyldt Lavningen over den interglaciale Mose. Nærmere Beskrivelse af denne Mose vil blive givet i Beskrivelsen til Kortbladet Vamdrup.

En flygtig og foreløbig Gennemgang af de af JESSEN samlede Torveprover viser, at Torven er en foroven stærkt føldet Sphagnum-torv med store Eriophorum-Tuer og ret talrige Carpinus-Nodder samt Cenococcum.
Den med X mærkede Gaard er Hollund Sogaard; den sorte Plæt Nordvest for Gaarden betegner den interglaciale Moses Beliggenhed og omtrentlige Udstrækning (indtegnet på Kortet sammen med de nye Veje af Hr. Skovrider Sørensen, Hollund Sogaard).
Mose ved Hollund Sogaard.

Nær Sydranden af Hejnsvig Bakkeø, der ved Holme Aas Dal er adskilt fra den Sydfor liggende Tislund Bakkeø, ligger Hollund Sogaard, for en lille forfalden Hedegaard, nu Skovriderbolig midt i et stort Plantagedistrikt\(^1\)). Gaarden ligger c. 16 km. Nord for Brørup Station. Omtrent 1 km. Nordvest for Gaarden findes en interglacial Mose, som Grosserer, Landstingsmand Holger Petersen først gjorde mig opmærksom paa. Mosen ligger i en Højde af c. 250' (80 m.) o. H. og er dækket af c. 2 m. Sand, der foroven er stenet; i de senere Aar har Skovrider Sørensen ladet udgrave en Del Tørv af Mosen for at anvende den til Kompost. Mosen blev opdaget, da man for en Del Aar sidengrave en Brond til det lille Arbejderhus, der ligger i dens Nærhed.

Over Mosen findes den sædvanlige flade Fordybning i Jordoverfladen (men ingen postglacial Mose); ifølge Nivellement af Hr. cand. phil. Th. Thomsen ligger den laveste Del af denne Fordybning 2,35 m. under det omgivende Terræn.

Da jeg d. 10. Septbr. 1903 kom til Stedet, forefandt jeg en stor aaben Grav (3,5 × 2,8 m.) med en Dybde af 2,3 m., som var gravet 1902 (Gravens største Udstrækning omtrent N—S); der var gravet ned til Overkanten af Overgangslaget over den egentlige Torv. I denne Grav lod jeg grave videre og lod først alt det i Aarets Løb nedstyrtede Sand og Grus omhyggeligt fjærne.

Denne Gravs Beliggenhed (Grav A) fremgaar af Fig. 21, hvor den Torvebunke, der ses paa Figuren, stammer fra min Udgravning; Figurerne 20 og 22 er ligeledes fra denne Grav; den ligger 25 m. Vest for Husets Brond.

Profilet i Grav A viste følgende Lejringsforhold (jfr. Fig. 22):

0,50—0,75 m.	Sand med faa og smaa, sandlidte Sten, Dæksand.
1,50—1,75 m.	lagedelt, stenfrit Sand.
0,50—1,00 m.	Overgangslag (brunt, „fedt“ Sand).
1,35 m.	sammenpresset Sphagnumtorv.
Grovt Sand.	

Paa Grund af stærk Vandtilstrømning kunde jeg ikke gennemgrave Torvelaget, men naaede kun gennem c. 2/3 m. af Torven; Torvelagets Mægtighed og Underlagets Beskaffenhed bestemtes ved Boring. Arbejdet hindredes meget ved den betydelige Vandføring i de nederste Torvelag.

Nogle faa Meter Nordost for Grav A foretog jeg en af de følgende Dage en Gravning; det viste sig, at Torvelaget her bliver tyndere, c. 0,6 m. mægtigt; kun paa dette Sted konstaterede jeg et tyndt Gytjelag, nogle faa cm. mægtigt, under Torven.

9,5 m. Ost for Grav A gravede jeg en Brond, der viste ganske samme Lagfølge og Mægtighed af Lagene som Grav A; paa Grund af Vandtilstrømning naaede jeg heller ikke her gennem Torven.

Efter Boringerne og Formen af Fordybningen over Mosen at domme synes Mosen at have sin største Udstrækning i Retningen Sydvest-Nordost; ved en Række Boringer, der gik fra Husets gamle Brond i sydvestlig Retning konstateredes Mosen endnu 70 m. Sydvest for Bronden; Overgangslaget fandtes her i en Dybde af 2,7 m.; den samlede Mægtighed af Overgangslaget og Torven var c. 4 m. Ved en Boring 50 m. længere mod Sydvest fandtes ingen Torv; 28 m. Nord for Husets gamle Brond børde jeg 2,7 m. uden at træffe Torv.

I det usædvanlig torre Efteraar 1904 foretog Skovrider Sorensen
Fig. 21. Mosen ved Hollund Søgaard (Grav A).
Bemærk, at Terrænet skråner fra Husene ned mod Mosen.
Fig. 22. Profil i Mosen ved Hollund Sogaard (Grav A, østlige Væg).
Det mørke Lag mellem det lagdelte Sand og det overste, stenede Sand er Ahl.
(Spaden er 1 m. lang).

"I Mosen har vi i Efteraaret gravet 4 Grave (6 × 6 Alen, 4 m × 4 m.), nemlig den, hvori Øksen 1) fandtes [Grav A] og 3 Syd for den. I de tre nordligste naaede vi ikke gennem Torvelaget paa Grund af Vand og Torvelagets Tykkelse, som her er 3 à 4 Alen (2—2,8 m.), men i den sydligste Grav var der i den nordre Side kun 1½ Alen (1 m.) og i den sondre Side kun c. ½ Al. (c. 0,3 m.) Torv. Da vi ogsaa er naaet gennem Torven mod Nord, synes det som om Laget kun har en Brede af c. 40 Al. (25 m.). Det over Torven liggende Sand har omtrent overalt en Tykkelse af 3 Al. (2 m.), og Torvelaget synes at have Trugform med c. 3 à 4 Al. (2—2,8 m.) Tykkelse i Midten. Det overste Lag af Torven, c. ½ Al. (0,3 m.), er blodt og undertiden lidt blandet med Sand, derefter bliver Torven fastere og fastere og ender med et 2′ à 3′ (5—8 cm.) tykt Lag af sammenpressede lange Græsser eller lignende, ligesom i den nordlige Side; jeg har tidligere sendt Dem noget deraf 2). Under Torvelaget fandtes i den sydlige Side af den Grav, hvor Torvelaget blev gennemgravet, et aldeles hvidt Lag Sand, 1′ à 3′ tykt og derefter c. 2 Al. (1,5 m.) fast Sand, rodt og gult. Sidsnævnte Lag lod jeg grave igennem og kom saa til et losere Sandlag, som synes at kunne tage Vandet."

Ved en Gravning det følgende Aar lykkedes det Skovrider Sørensen at skaffe Afløb nede for Vandet, idet han borede gennem Torven — en lagtagelse, som vil kunne blive af Betydning for en senere, grundigere Undersøgelse af denne og lignende Moser, hvis Underlag er Sand.

Overgangslaget. En af Hr. cand. polyt. Alf Stage 1904 foretaget Glødeanalyse af en Prøve af Overgangslaget fra Grav A, fra det overste Spadestik (0—45 cm. under Lagets Overflade) gav 50,1 ‰ Aske (Glodetab 49,6 ‰). en Prøve fra næstoverste Spadestik (45—80 cm.) gav 54,1 ‰ Aske (Glodetab 45,6 ‰).

I Overgangslaget og i den overste Del af Torven, helt ned til 1 m. under dennes Overflade, fandt jeg talrige Rester af Betula nana, navnlig en Mængde fuldstændigt bevarede Blade (mærkeligt nok ingen Frugter eller Rakleskæl) sammen med enkelte Rester af Picea excelsa, Bark af en storbladet Birk, enkelte Blade af Vaccinium uliginosum og Cenococcum-Kugler.

I Torven, der var en stærkt komprimeret Sphagnumtorv, fandtes følgende Planter:

1) Se nedenfor S. 201.
2) Sphagnumtorv med tykke Sphagnumstængler.

200

Cenococcum geophilum.
Amblystegium exannulatum.

fluitans.
Polytrichum strictum.
Sphagnum papillosum.
Picea excelsa, et Blad og Barkskæl (Stencellebark, Tavle X, Fig. 6).
Betula alba, Barkstykker.
B. nana, talrige Blad (Tavle X, Fig. 15).
Calluna vulgaris, Stængler og bladbærende Grene.
Dulichium spathaceum, en enkelt Frugt (Tavle X, Fig. 3).
Empetrum nigrum, Grene.
Eriophorum vaginatum, Bladrester.
Oxycoccus palustris.
Quercus sp., et Bladfragment.
Vaccinium uliginosum, talrige Blad.

I de smaa Prover af Gytje, jeg fik op, fandtes ingen makroskopisk bestemmelige Planterester.

At Mosen er interglacial og jævnaldrende med de foran beskrevne Moser paa Tislund Bakkeø, fremgaar dels af dens Beliggenhed under et Par Meter utvivlsomt diluviale Lag, dels af Forekomsten af Dulichium og Picea; af stor Interesse er ogsaa Fundet af Betula nana i Torvens overste Lag og Overgangslaget.

Det, der imidlertid giver denne Mose en særlig Interesse, er de Fund af Eoliter, primitive Menneskeredskaber af Flint, jeg gjorde her. Af Hensyn til Sagens Vigtighed skal jeg give en udførlig Fremstilling af Fundforholdene og alle med dem følgende Omstændigheder.

Efterat de overste c. 45 cm. af Overgangslaget var afgravede,
bortgravedes et Lag af c. 35 cm. Mægtighed; i denne Dybde, mellem c. 45 cm. og 80 cm. under Overfladen af Overgangslaget, fandtes ligeledes talrige skarpkantede Flintstykker af samme Udseende som ovenfor — og desuden en poleret Flintøkse; personlig brækkede jeg den brune, formuldede Torvemasse, hvori Øksen sad, og saa da til min store Overraskelse en smuk, poleret Flintøkse af yngste neolitiske¹) Type, (en „tyknakket Retøkse“), med en ejendommelig mat, hvid Patina, meget slidt paa Æggen og gentagne Gange opsættet.

Efter dette forbloffende Fund indstillede jeg straks Gravningen og red til Brorup, hvorfra jeg pr. Telegram udbad mig arkeologisk Assistance fra Nationalmuseet i Kjobenhavn.

Hvorledes Øksen — forudsat, at den er neolitisk og postglacial — kan være kommen saa dybt, c. 0,45—0,80 m., ned i Overgangslaget, var og er mig den Dag i Dag ganske ufatteligt; thi Overgangslaget har en betydelig Fasthed og Sejghed, og Øksen kan ikke tænkes ved sin egen Vægt at være sunken gennem Laget, der gjorde et absolut intakt Indtryk²). Men, som sagt, Formen er saa typisk, ¹) Med velberaad Hu benytter jeg Betegnelsen neolitisk og ikke de danske Arkaologers gængse Betegnelse: yngre Stenalder, idet jeg anser Betegnelsen ældre og yngre Stenalder for vildledende, og foretrekker de i den internationale Litteratur almindelig anvendte Betegnelser.

²) For paa Forhaand at imodgaa den Indvending, at de Arbejdere, der gravede for mig, og hvem jeg omtrent en halv Time, for vi fandt Øksen, havde lovet en større Ducor, hvis vi fandt Skeletdele eller Redskaber af Mennesker, skulde have smuglet Øksen ned i Mosen for at faa den udlovede Ducor, sikrede jeg mig en Erklæring under Eds Tilbud fra disse tre Mænd: »at de ikke for Udgravningen havde set denne Ække og var overbeviste om, at den blev udgravet af Torven.« Folkene havde ikke forladt Mosen, efter at vi havde talt om at finde Menneskerester i den — og de havde aldrig for, skont Grosserer HOLGER PETERSEN gentagne Gange ved tidligere Lejlighed havde spurgdt dem, om de ikke fandt Oldsager i Mosen, gjort Forsøg paa at lave Falskneder. De tre Mænd er alle ældre, paalidelige Mænd, faste Arbejdere paa Gaarden og i dens Plantager, og faar det bedste Lov af Skovrider SØRENSEN, der stod ved min Side, da Fundet blev gjort: også han anser Falskneri fra Folkenes Side for ganske udelukket.

I en lille Grusgrav i umiddelbar Nærhed af Grav A fandtes ved Gennemgang af et stort Antal (2400) Sten fra ›Dæksandet‹ en enkelt lille, smukt tilbugnet, neolitisk Flint-Pilespids, som giver en Antydning af, at Øksen maaske kan stamme fra Dæksandet og tilfældig kan være skredet fra dette (dets Overflade) ned i Graven, der, som nævnt, havde staaret aaben et Aarstid: men dermed er ikke forklaret, hvorledes Øksen er kommen saa dybt ned i Overgangslaget.
og de inden- og udenlandske Arkæologer, jeg i den Anledning har raaført mig med, er saa enige om, at dette Redskab er neolitisk og postglacial, at jeg (i hvert Fald indtil videre) maa opgive min oprindelige Antagelse, at Øksen er palæolitisk og interglacial.

Eoliterne. Som ovenfor nævnt fundt jeg i Overgangslaget talrige, skarpkantede, oftevist hvidt patinerede Flintstykker: de havde et ganske andet Udseende end Smaastenene i „Dæksandet” lige under Jordoverfladen; ved fortsat Gravning i Grav A fandtes saadanne Flintstykke ogsaa i den faste, absolut intakte Sphagnumtorv, ned til en Dybde af c. 2/3 m. under dennes Overflade; de fandtes ligeledes i Overgangslaget og i Sphagnumtorven i de to Brønde, jeg lod grave ned til Mosen Nord og Ost for Grav A og som begge gik gennem Jordlag, der med absolut Sikkerhed kan siges aldrig for at være gennemgravede af Mennesker.

Skont de tre ovennævnte — og flere andre — danske Arkæologer, hvem jeg paa Findestedet — og senere i København — viste mine Samlinger af Sten herfra, bestemt afviste min Opfattelse af disse Flintstykker som primitive Menneske-Redskaber, kunde jeg dog ikke komme hort fra den Tanke, at de antydede Menneskets Tilstedeværelse her i interglacial Tid, hvorfor jeg selv forsøgte at sætte mig ind i den nyeste Litteratur over Tertiærtidens og Diluviets Arkæologi. Jeg saa da hurtigt, at mine Fund forte mig direkte ind paa Eolit-Spørgsmaalet, der i de senere Aar vel nok kan siges at være det vigtigste og mest debatterede i den europæiske præhistoriske Arkæologi.

Mine Samlinger af Flintstykker fra Hollund Sogaard-Mosen sendte jeg i 1904 til Dr. A. Rutot, Bruxelles, med Anmodning om, at han velvilligst vilde udtaele sig om, hvorvidt der var Eoliter iblandt de c. 100 Flintstykker, jeg havde opbevaret 1).

Af disse 100 Stkr. betegnede Rutot 10 Stykker — med større eller mindre Tvivl — som hørende til „l'industrie éolithique”; Ordlyden af hans Udtalelse i Brev af 25. Juli 1904 var:

I—III. Grav A, i Tørv, 1,3 m. under Overfladen af Overgangslaget „2 pièces... paraissent être des percuteurs; 1 pièce semble être un petit racloir, mais c'est douteux.“

IV. Grav A: „Une sorte de racloir, un peu roulé, qui parait bon.“

V—VII. Brond I, Nord for Grav A: „3 pièces paraissent avoir servi de racloirs, mais pas bien caractérisées, douteuses."

1) Jeg benytter Lejligheden til at rette en hjærtelig Tak til Hr. A. Rutot for den store Elskærlighed, hvormed han i denne Sag har hjulpet mig med sin enestaaende Viden paa Eolit-Omraadet.
VIII. Brond I, i Torv: „Une petite lame naturelle avec retouches d'utilisation, peut être un petit racloir, mais douteux“.

IX. Brond II, Ost for Grav A, i Overgangslaget, 25—50 cm. under dets Overflade: „Un rognon irrégulier d’où l’on paraît avoir extrait des petites lames.“

X. Brond II: „Un petit racloir douteux.“ „Voilà tout ce que j’ai vu. C’est peu et il n’y a rien de certain ni de bien caractéristique. En général, les pièces marquées1) paraissent appartenir toutes à l’industrie éolithique, c’est à dire à l’industrie primitive! Tout le reste ne comprend que des éclats naturels, détachés par le fendillement. Il n’y a aucune trace de débitage intentionel par percussion, car aucune pièce ne possède le bulbe de percussion. Aucune pièce ne paraît appartenir au Paléolithique.“

Idet jeg forovrigt henviser til Figurerne af disse Stykker (Tavle X, Fig. 7—10), skal jeg forsøge at give en kort Beskrivelse af de enkelte Stykker, idet jeg dog gor opmærksom paa, at disse Sager er meget vanskelige at beskrive ordentligt, og at min Uvanthed med Stoflet ikke gor Vanskeligheden mindre.

ad I—III. Af de to percuteurs? („Slagstene“) er den ene (I) noget uregelmæssigt formet, hvidgraa, dens Dimensioner 60 × 44 × 35 mm.; den har talrige Slagmærker rundt om paa Stenens talrige Kanter; den anden (II) er mindre, 45 × 30 × 27 mm., mørkere graa, afrundet, til Dels med hvid, naturlig Overflade og talrige Slagmærker (Fig. 7). Det tredje Stykke, som Rutot opfatter som en racloir? („Skrabere“), er en flad, temmelig sandslidt, lille Sten, 29 × 19 × 7 mm., med ret utydelige Slidmærker paa den ene Rand.

ad IV. En hvidgraa, flad Flint, 50 × 32 × 13—18 mm., som viser et meget stort Antal Slidmærker paa den ene Kant, ingen eller næsten ingen paa de andre Kanter (Fig. 8).

ad V—VII. Tre Skrabere?: V: en lysgraa Flint med hvidlig Overflade, tresidet-prismatisk med skraa Endeflader; den ene af de lange Kanter har en Mængde (over 20) fine Slidmærker; efter Bru-

1) Rutot mærkede de ovenfor nævnte Stykker med et Kryds.
gen har Stenen vist nok været udsatt for Sandslid; Størrelsen er 46 × 34 × 23 mm. VI: en flad, lys Flint, 60 × 50 × 12 mm., med talrige Slidmærker paa to Kanter. VII: en lille graa, stærkt glinsende Flintsten, uregelmæssigt tresidet-prismatisk, 21 × 18 × 10 mm., med talrige Slidmærker paa den ene af Længdekanterne.

ad VIII: Den lille Skræber? fra Sphagnumtorven er 43 mm. lang, 15 mm. bred; dens største Tykkelse er 7,5 mm.; den ene Flade er svagt konkav, den anden konveks; paa denne sidste synes en tynd Lamel at være afskrælet af Mennesker. Den ene Rand danner en ret skarp Æg med c. 20 smaa Slidmærker (Fig. 9).

ad IX. En Flintkold, der har en meget ujævn og hullet Overflade og uregelmæssig Form; den bestaar af lys Flint og har en Størrelse af 55 × 47 × 35 mm.; de afskærelde Læmelller maa have været ganske tynde og buede, e. 7 mm. brede og henholdsvis c. 36 og 23 mm. lange (Fig. 10).

ad X. Et Stykke med uregelmæssig Okseform, 48 mm. langt, 14—33 mm. bredt og indtil 11 mm. tykt; den ene af de brede Flader dannes af Flintkoldens naturlige Overflade og er udpræget konkav i Flækkens Længderetning, hvorved der dannes en dyb Fure, medens den anden Bredflade er svagt konveks. Den ene af de lange Kanter har talrige Slidmærker, de andre ogsaa nogle, men betydeligt færre.

Jeg ønsker ikke ved denne Lejlighed at gaa nærmere ind paa dette Funds Betydning, da jeg haaber snart at komme tilbage til det i Forbindelse med de andre Fund af Eoliter og Palæoliter (Strépyien-Typen), som jeg senere har gjort paa andre Steder her i Landet, især i Vangede Grusgrav ved Gjentofte 1).

Mosen ved Hollund Sogaard fortjener i højeste Grad en nærmere Undersøgelse — helst en fuldstændig Udgravning; Vandforholdene i den kan, som ovenfor nævnt, let blive gode, og man kan efter Mosen's Alter gøre sig grundet Haab om ogsaa at finde palæolitiske Redskaber foruden Eoliterne; thi, som Rutot skriver om de faa og for største Delen lidet karakteristiske Eoliter, jeg hidtil har fundet i Mosen: „Leur présence est ... une indication que l'on pourra sans doute trouver mieux et plus riches.“

For at undgaa Misforståelser bemærkes, at jeg — i Overensstemmelse med Rutot's senere Arbejder — benytter Betegnelsen Eoliter for alle primitive Redskaber, ligegyldigt om de er tertiære, diluviale eller postglaciale — i Modsetning til G. de Mortillet, der 1883: først benyttede Betegnelsen industrie éolithique om det tertiære Menneskes Redskaber.
Interglacial Gytjeaflejring ved Ejstrup.

Fig. 23. Ejstrup.

I Maj 1901 gav Hr. Viceinspector H. Winge mig en lille Sandprøve fra Ejstrup til Undersøgelse; det var ret grovt, kalkholdigt Sand med talrige Planterester, især store, meget medtagne fjerrribbede Blade af Avnbøg; kun de kraftigste Ribber var bevarede. I Sand af denne Beskaffenhed havde man i Foraaret 1900 fundet et helt Skelet af Cervus dama (Daadyr); de bevarede Rester af dette er senere omtalte og afbildede af H. Winge (1904) i hans Afhandling: Om jordfundne Pattedyr fra Danmark (S. 263—267, Tavle VIII).

Ved en flygtig Undersøgelse af denne Sandprøve fandtes:

Cenococcum geophilum, flere smaa Kugler.
Aspidium aculeatum, et Smaablad.
Taxus baccata, enkelte Blade.
Alnus glutinosa, enkelte Nodder.
Carpinus betulus, 5 Nodder, talrige Bladrester.
Eupatorium cannabinum, enkelte Frugter, til Dels med Fnok.
Potamogeton sp., Frugtstene.
Quercus sp., Frugter.
Scirpus sp., Frugter.

Daadyret saavel som denne Florula's Sammensætning viste, at Aflejringen var diluvial, sandsynligvis interglacial, og i Efter-
sommeren 1901 foretog jeg derfor en nærmere Undersøgelse af Lokaliteten 1).

Beskrivelse af Forekomsten.

Fundet blev gjort ved en Udgravning til et Vigespor lige Øst for Ejstrup Holdeplads; denne ligger paa en Terrasse i Kolding Aadalen, paa Aaens Nordside, c. 7 km. Vest for Kolding. Aaen snor sig i mange Sving gennem den brede og anselige Dal. I Terrassens Overflade har senere Erosion dannet større og mindre Klofter, hvorved Terrassens Rand ud mod Aaen er udskaaret i „Tunger“. Banelinjen, hvis Plenum ligger lavere end Terrassens Overflade, gennemsætter disse Tunger, hvorved de forskellige nedenfor omtalte Profilet fremkommer.

Den Gennemsætning, hvori Daadyr-Skelettet fandtes, ligger umiddelbart Øst for Holdepladsen, Nord for Banelinjen; vi vil kalde den Profil A.

Fig. 24. Udsnit af Generalstabens Maalhardsblad, Kolding Nr. 3409.
1:20000. Kurvernes Equidistance $5' = 1,57$ m. Det vestlige Kryds er Profil A; det østlige Profil B.

Mod Vest og Øst begrænses Profilet af smaa Erosionsklofter; hele Gennemsætningens Længde i Jærnbanesporets Højde, er c. 160 m.; Jærnbanesporet ligger c. 12,5 m. o. H.

Ved nedrammede Pæle delte jeg Skrænten i 21 Stykker, hvert med en Længde af 7,5 m. (svarende til en Skinnelengde); Profilet undersøgtes paa den Maade, at hele den nederste Del af Skrænten blottedes for den paalagte Græstorv, saaledes at Overkanten af det stenfri Ler (jfr. Fig. 25) overalt var synlig; derefter gravedes talrige dybe Render opad gennem Skrænten til den overste Rand; nedarfter

1) Jeg tillader mig her at rette en varm Tak til d’Hrr. Baneingenior Larsen og Overbanemester Henning, begge den Gang i Fredericia, for deres overordentlige Imodekommen og interesserede Hjælp, medens jeg arbejdede paa Statsbanernes Territorium; ligeledes beder jeg Hr. Kæmper I. O. Brandorf, Kolding, modtage min hjærteligste Tak for alle Oplysninger og Meddelelser angaaende dette og saa mange andre vigtige Fund i Kolding-Egnen.
Fig. 25. Ejstrup. Profil A.

Romertallene I—VII betegne de større Boringers Nummer — se Teksten.

Den vandrette Linie ×× ligger ca. 11/4 m. under Skinne-Niveau’et (den angiver Bunden af Groftten langs Banelinjen).

Afstanden mellem Pælene er 7,5 m.
gravedes talrige større og mindre Huller ned til det humøse Sand, hvis Beliggenhed forøvrigt konstateredes ved Boringer.

I det store og hele viste Gennemskæringen følgende Profil:

3—4 m. lagdelt Terrasse-Sand (c).
0,15—2,5 — (øvre) stenfrit Ler (d).
0—7 — brun Gytje (y) med humøse Sandlag (f).
1—2 — (nedre) stenfrit Ler, lagdelt (d).
Grus (c) eller Sand (b).

Moræneler (a), kun iagttaget i den vestlige Ende af Profilet.

I den østlige Del af Profilet var Forholdene mere simple end i den vestlige Del, hvor det øvre og nedre stenfri Ler smelte sammen og forenede sig til ét sammenhængende Lag.

I hele Profilets Længde findes overst en Kappe af lagdelt Terrasse-Sand (c) med faa og smaa Sten; pletvis er den overste Del af dette Sand noget mere leret og stenet end det nederste.

Under dette Sand ligger overalt i hele Profilet stenfrit Ler (d), der i den vestlige Del af Profilet er tydeligt lagdelt og nær en anselig Tykkelse, indtil c. 3 m., men mellem Pæl 5 og Pæl 6 deler sig i et øvre og et nedre Lerlag, adskilt ved et betydeligt Lag brun Gytje. Det øvre Lerlag er i den allerstørste Del af Profilet ganske ubetydeligt, 0,15—0,25 m., gulligt og brokket. Ved Boringer og Gravninger konstateredes det lagdelte, stenfri Ler under Gytjen paa talrige Steder, især i Bakkens vestlige Del; paa de Steder, hvor jeg kom igennem det, havde del en Mægtighed af 1—2 m.

Hr. Cand. polyt. Alf Stage har (1904) udført 2 Slæmmeanalyser af Ferskvandsleret ved Pæl 5, den ene Prøve (α) taget i Skinneneveauc'et, den anden (β) 1 m. dybere i Profilet; der toges 50 gr. i Arbejde, deraf var:

\[
\begin{array}{c|c|c}
& \alpha & \beta \\
\hline
< 0,01 mm. & 83,0\% & 83,2\% \\
0,01—0,05 & 13,8 & 14,8 \\
0,05—0,1 & 2,8 & 1,8 \\
0,1—0,2 & 0,5 & 0,1 \\
> 0,2 & 0,1 & 0,1 \\
\hline
& 100,0\% & 100,0\%
\end{array}
\]

Hr. Alf Stage udførte endvidere en Del Kalk-Bestemmelser af Prover af Ferskvandsleret; dets Kalkholdighed viste sig at variere fra 33,5\% til 50\%.

Terrassens Indre bestaar hovedsagelig af interglaciale Ferskvandsaflejring, hvis midterste Parti dannes af et anseligt Gytjelag.
Gytjen er brunlig-brungrøn og har en Mægtighed op til 7 m., af-
tagende fra Profillets Midte mod Vest; Gytjens Mægtighed mod Ost blev ikke undersøgt.

Hr. Cand. polyt. A. STAGE har bestemt Glodetabelt for 2 Prover af Gytjen; det var 17,3 °/o og 18,8 °/o.

I Gytjen findes en Del *Vivianit* smaa, indtil ærestore Korn; hyppigt optraadte *Vivianititten* i den østlige Del af Profillets, især umiddelbart over det humøse Sand. I smaa Hulrum og Sprækker i Gytjen fandtes paa de torede Prover, der havde ligget i mine Sam-
linger fra 1901, smaa monokline, mørkeblaa *Krystaller*, der ifølge **Hr. Docent O. B. BOGGILD** er *Vivianit-Krystaller*; desuden fore-
kom enkelte smaa *Gips-Krystaller*, hist og her også enkelte hvide Glimmerblade. Gytjen indeholder, især i dens øverste og nederste Del, noget Kalk; i den vestlige Del af Profillets, ved Pæl 6—7, saas jævn Overgang mellem Gytjen og det øvre Ferskvandslær.

I Gytjen findes et humøst, gruuligt (i fugtig Tilstand brunlig eller næsten sort) Sandlag (f) af vekslende Tykkelse, gennemsnitlig c. 1,5 m.

** UNDER GYTJEN** laa, som ovenfor omtalt, atter lagdelt, stenfrit (nedre) Ferskvandslær, og under dette konstateredes i den vestlige Del af Bakken grovt Grus, der var meget vandførende; paa et enkelt Sted (Boring III, mellem Pæl 7 og Pæl 8) fandtes stenfrit Sand. I den vestligste Del af Profillets konstateredes Moræner under Gruset (I).

Ved Pæl 5 samledes en større Prove af Gruset under Ferskvandslær; i denne Prove foretog Cand. polyt. **ALF STAGE** en „Sten-
tælling“ med følgende Resultat:

1) *Vivianit-Krystaller* er, saavidt jeg kan se af Litteraturen, meget sjældne i Diluviet, medens de forekommer hyppigt i ældre Formationers Forsteninger (Ogler, Muslinger). Ifølge **DANAU**: (Descriptive Mineralogy, 6 ed., 1892) synes krystalliseret *Vivianit* at være fundet i Myremalm i Nordamerikas Alluvium.

NAAR A. GAERTNER (1897) mener, at *Vivianit med jordagtig Beskaffenhed først forekommer i Alluviet, er det urigtigt; jeg har ved en tidligere Lejlighed (N. Hartz og E. OSTRUP, 1890) gjort opmærksom paa, at jordagtig *Vivianit* er almindelig i dansk diluvial (interglacial) Diatoméjord.
Eruptiver og krystallinske Skifre.............. 160
Sedimentære Bjærgarter, ældre end Kridtformationen 42
Kalksten fra Kridtformationen 46
Flint 215
Tertiære Bjærgarter 0
Forskelligt og ubestemt 51)

468 100

Eruptiver og krystallinske Skifre 97,90 gr.
Flint 197
Hele Proven 347

Forholdet mellem Vægtprocenten for Flint og for Eruptiver +
krytinske Skifre er da: 2,03; Procenttallet for Flint, divideret med
Procenttallet for Eruptiver + krystallinske Skifre: 1,9. Antallet af
Eruptiver + krystallinske Skifre + Flint var 375; heraf var efter
Antallet 57,3 \% Flint.

Dette Profil er saa interessant, at det fortjener en nojere Undersøgelse, end jeg har kunnet udføre; navnlige bør det vistnok tilraades
at foretage en nojagtigere Opboring af Lagene i den østlige Del af
Bakken og endnu længere mod Øst.

Af dybere Boringer og Gravninger foretages følgende (Romertallene svarer til Tallene i Profilet, Figur 25):

I. Ved Pæl 2, 8 m. Øst for Terrassetungens vestlige Affald (Udgangspunktet for Inddelingen med Pæle laa ud for Midten af den lille Erosionskloft Vest for Terrassetung) fandtes kun Moræneler;
 jeg borede her c. 7,5 m. ned under Skinne-Niveauet, udelukkende
gennem Moræneler. Den overste Del af Moræneleret (c. 0,8 m.) var
gullig, derunder var Leret graablat; det indeholdt talrige Sten.

II. Ved Pæl 4, c. 25 m. Øst for Terrassetungens Vestende, viste
 Boringen, at det stenfri Ler, der her naaede c. 1,5 m. op over Skinne-
 Niveauet, gik c. 1,5 m. ned under dette, og at der derunder fandtes
 Grus.

III. Mellem Pæl 7 og 8 gik Gytjen omtrent ned til Skinne-Niveauet;
det lagdelle Ler under Gytjen konstateredes ved Gravning til c. 1 m.
derunder dette Niveau og derefter ved Boring yderligere 1,5 m. ned;
derunder 1,3 m. stenfrit Sand.

1) 5 tvivlsomme eocene Smaasten, som ifølge Dr. K. A. GRONWALL kan være
 Kridt-Grønsand.
IV. Ved Pæl 9 gravedes en Brand med et Tværsnit af 1,3 m.; denne naaede ned til c. 5 m. under Skinne-Niveauet; der gravedes først gennem den haarde Gytje, derefter gennem 2 m. blaaligt, lagdelt Ferskvandsler; til sidst boredes gennem 1 m. stenet Sand. Videre Gravning maatte opgives paa Grund af stærk Vandtilstrømning.

V. Ved Pæl 11 boredes 6 m. gennem Gytje, uden at dens Under-lag naaedes.

VI. Mellem Pæl 13 og 14 boredes først gennem 5 m. humost Sand og Gytje, derefter gennem 1,3 m. hvidgraat, fint Ferskvandsier; til sidst boredes gennem 1 m. sten Sand. Videre Gravning maatte opgives på Grund af stærk Vandtilstrømning.

VII. Mellem Pæl 15 og 16 boredes først gennem 5 m. humøst Sand og Gytje, derefter gennem 1,3 m. blaaligt, lagdelt Ferskvandsier; til sidst boredes gennem 0,3 m. sten Sand. Videre Gravning maatte opgives på Grund af stærk Vandtilstrømning.

Saa godt som alle i det følgende omtalte Dyr og Planter er samlede i Profil A.

Ost for Profil A saas i Groften langs Jærnbanelinjen, paa den nes Nordside, baade brun Gytje og humost Sand med store Granstammer og talrige Avnbøge-Nodder; her foretoges dog ingen nærmere Undersøgelse.

Syd for Banelinjen, ligeoverfor Profil A (i det Snit, der ses længst mod Vest paa Figur 23) saas lignende Lejringsforhold som Nord for Banelinjen. I det humose Sand samlede jeg her over 50 Kogler af Gran, de fleste velbevarede og kraftigt udviklede; den længste var 15,5 cm. lang. De fleste Kogler er ganske rette, oftest mere eller mindre fladtrykte; nogle er dog ret medtagne og rullede, enkelte gravede af en Gnaver (Egern). Paa et stort, rullet Vedstykke sad en Mængde sorte Apothecier af Rosellinia sordaria (Fr.), hvis Sporer var udmærket velbevarede og endnu rødlige.

Over det humose Sand laa her et tyndt, gulgraat, stenfrit Lerlag, ganske opfyldt med ærtstore Klumper af jordagtig Vivianit, der gav Leret et meget broget Udsøende, især naar det blev tørt.

Ved Undersøgelsen i Laboratoriet viste dette Ler sig ganske blottet for Dyre- og Planterester.

Profil B.

Ost for Profil A gaar Jærnbanelinjen gennem en anden og større „Terrassetunge“, der skyder sig længere ud mod Syd i Aadalen (jfr. Fig. 23 og 24). Da Statsbanerne i Foraaret 1902 foretog en større Udgravning i denne Del af Terrassen (til et nyt Vigespor og til Vende-plads for Roevognene), blottedes et udmærket smukt Profil — Profil B — i denne „Terrassetunge“; Profiletts Længde var c. 50 m., dets Hojde 3 4 m., regnet fra Bundens fra Groften langs Banelinjen; Groftens Bund laa atter c. 1 1/4 m. under Skinne-Niveauet.
Overst i Profil saas 3—4 m. lagdelt, stenfrit Sand med diskordant Parallelstruktur og overmaade vekslende Lagstilling; de overste Løg af Sandet var noget mere lerede end de andre. Figur 26—29 viser den smukke Lagdeling og de ejendommelige Lejringsforhold af Sandet over Gytjen.

Overfladen af Gytjen i Profil B bærer Spor af en tydelig Is- (og Vand-?)bevægelse fra Ost til Vest.

Under det lagdelt Sand kom brun Gytje, hvis Overflade var meget ujævn; i Profilets østlige Del naaede Gytjen op over Bund af Groftens langs Jærbanesporet; det samme var Tilfældet i Profilets vestlige Del (ved den lille Kloft), men i den største Del af Profilet fandtes Gytjen først ved Boring eller Gravning i vekslende Dybde under Groftebunden, 0,75—1,50 m. under denne. De overste Løg af Gytjen var tydeligt brokkede, med sorte, blanke Gladellader paa mange af Brokkerne.

I Gytjen genfandtes det humose Sandlag, med lignende Tykkelse som i Profil A; Sandet var kalkholdigt. I Sandlaget i Gytjen forekom talrige velbevarede Grankogler, Nodder af Avnbog, Fro af Stratiotes aloides, store Kitinhude af Anodonta og Laag af Bythinia.

I den østlige Del af Profilet (ved Vendepladsen) naaede Gytjen højest op, omtrent 1 m. over Groftens Bund; konkordant med Gytjens Overflade laa her flere morkfarvede, humose Sandlag (jfr. Fig. 29), ganske fyldte med Planterester, hvoriblandt talrige smukke, kun lidet rullede Grankogler, Avnbøge-Nodder, rullede Pinde o. s. v. Af en Arbejder fik jeg et lille Stykke Rav, der angaves at være fundet i en af de mørke Sandstriber sammen med Grankogler; dets Dimensioner er 1,8 × 1,6 × 0,7 cm.; det er tydeligt rullet, udvendig rødbrunt, indvendig mat hvidgult, opallignende.

Disse morkfarvede Sandstriber mindede i mangt og meget om Rav-Pindelag, kun indeholdt de intet tertiært Materiale med Undtagelse af det enkelte, ovenfor omtalte Ravstykke.
Fig. 26. Ejstrup. Vestlige Ende af Profil B. Terrasse-Sand med meget vekslende Lagstilling.

I Baggrunden Bakkerne på Sydsiden af Kolding Aa dalen. Tilhøjre svinger et provisorisk Arbejdsspor ned i Engen.

Ved + dem naturlige Terræn-Overflade, der er dækket af ca. 1½ m. opkastet Muld.
Fig. 27. Ejstrup. Profil B. Østlige Fortsatsetse af Fig. 26.

Terrasse-Sand med meget rekølvende Længstilling; ved + den naturlige Terræn-Overlædte, derover opkastet Målø.
Fig. 28. Ejstrup. Profil B. Detailbillede af Fig. 27.
Fig. 29. Fjærup. Profil B.

Ostligste Del af Profil B. umiddelbart Vest for den halvcirkelformede Vindemåle.

Ved Børinger og Gravninger langs Jærbanelinjen mod Øst konstateredes Gytjens Forekomst paa en Strækning af c. 630 m. fra den vestligste Del af Profil A mod Øst; det synes, som om det kun er i Profil A, at der findes Ferskvandsler over Gytjen.

Paa den nordlige Side af Banelinjen, over for den vestligste Del af Profil B, fundt jeg ved Boring, at der under 0,7 m. Gytje fandtes et 2 m. tykt Sandlag, der nedadtil blev brunligt og atter gik over i Gytje; i denne boredes 0,3 m. uden at naa igennem den.

En anden Boring, paa Sydsiden af Banelinjen, lidt Vest for Vendepladsen, viste folgende Forhold:

0,7 m. brun Gytje.
0,3 - humøst Sand med Planterester.
3,0 - brun Gytje.
0,3 - humøst Sand.

Intetsteds i Profil B naaede jeg Underlaget under Gytjen.

Ved Udgravning paa Vendepladsen, lidt Øst for det i Fig. 29 afbildede Parti, stødte man paa et anseligt Gruslag over Gytjen. Sammen med Statsgeolog A. Jessen gennemgik jeg paa Stedet c. 2000 Blokke fra dette Gruslag; enkeltte var større end en Kubikmeter, de mindste af Størrelse som et Barnehoved. Der var i denne store Bloksamling forbævsende faa store Flintblokke (knap 50), medens der fandtes et betydeligt større Antal smaa Flintstykker (fra Nød- til Knynæve-Størrelse) blandede mellem de store Blokke. Af Kalksten eller Kridt fandtes ikke et eneste Stykke. To Kvartsiter var tydeligt sandslidte og delvis „trekantede“.

„Af Sandstensblokkene er et Par med stærk rod Farve sandsynligvis Dalarsandsten; Hovedmassen af de øvrige er vel kambrisk; af
særlig Interesse var en Blok af et arkoseagtigt Konglomerat samt en Tigersandsten, der rimeligvis er haitisk, sandsynligvis nordhaitisk. En stor, isskuret, hvid, meget glimmerholdig Sandsten, indeholdende en Del Lerboller og en Mængde Planterester, hvoraf ingen kunde bestemmes med Sikkerhed, er af omtrent samme Alder som Skaanes og Bornholms kulforende Dannelser og hører efter den petrografiske Karakter at domme snarere til det nordvestlige end til det sydøstlige Skaanes eller Bornholms Rhæt-Lias.«

Ferskvandslersets Flora og Fauna.

Ved Pæl 5.

a. Umiddelbart over Gruset, i Lerets allernederste Lag, der ved Tørring brydes itu i skarpkantede Smaabrokker, fandtes foruden nogle faa Kridt-Bryozoer, kun Polarpplanter og enkelte Skaller af *Pisidium* sp. Jeg fandt følgende Planter:

- *Cenococcum geophilum*, faa og smaa Peridier.
- *Ceratodon purpureus?*, ganske smaa Stængelspidser af faa mm. Længde.
- *Armeria maritima*, et Bæger.
- *Carex* sp., en Frugt uden utriculus.
- *Dryas octopetala*, tre Blade og talrige Frugter; en af disse med en 8 mm. lang Griffel.
- *Potamogeton perfoliatus*, to Stene.
- *Salix polaris*, et lille Blad, 2,5 mm. langt incl. Bladstilken, og 2,6 mm. bredt.

Leret var kalkholdigt (42,5% CaCO₃) og meget fattigt paa Planterester. I en ret stor Prøve (15 × 8 × 8 cm.) fandt jeg kun en enkelt Blomsterbund af *Dryas*.

b. 1 m. over Grusets Overkant, fandtes ligeledes kun Polarpplanter:

- *Dryas octopetala*, et Bladfragment, en Frugt og en Frugtbund.
- *Potamogeton pusillus*, en enkelt Sten (l. p.).
Leret var kalkholdigt (42 % /CaCO₃) og meget brokket; de enkelte Brokker i de hjembragte Prover var 1—1,5 Cubcm. store; det var yderst fattigt paa Planterester.

c. Højere oppe i Leret, c. 0,3 m. under dets Overkant, hvor Leret var itet og gulligt, fandt jeg ingen Planterester i det, kun nogle fåa, smaa Skaller af *Pisidium* sp.; Leret var her ganske ødelagt af Frost og recente Planterødder; hvis Leret har indeholdt Planterester, er de sikkert ødelagte.

Mellem Pæl 4 og Pæl 5 fandtes i Ferskvandsleret enkelte knuste *Pisidium*-Skaller; men i Reglen var disse smaa Skaller hele og under tiden laa de parvis sammen.

Ved Pæl 6.

I Ferskvandsleret paa Grænsen mellem Gytjen og det øvre Ferskvandsler (over Gytjen), i kalkholdigt (48 % /CaCO₃), Ler, der var svagt brokket, i fugtig Tilstand lysegraat, fandtes:

Anodonta mutabilis, et Brudstykke af en Skal uden Epiderm.
Cristatella mucido, talrige Statoblast.
Daphnia, talrige Skaller.
Ostracoda, talrige Skaller.
Pisidium sp., talrige Skaller.
Valvata piscinalis, et Eksemplar.
Nitella sp., Oogonier.
Amblystegium cordifolium.
Antitrichia curtipendula.
Hypnum sericeum.
Neckera complanata.
Alnus glutinosa, to Frugter.
Betula alba, enkelte vingelose Frugter.
Cirsium lanceolatum, to Frugter, T. XII, Fig. 6—7.
Eupatorium cannabinum, en Frugt.
Najas marina, en Frugt.
Populus tremula, talrige Rakleskæl, T. XI, Fig. 14—18.
Scirpus sp., enkelte Frugter.

Leret indeholdt en overordentlig stor Mængde Ostracoder, som især faldt i Øjnene, naar det spaltedes det i fugtig Tilstand.

Ved Pæl 9.

I kalkholdigt Ferskvandsler (39,5 % /CaCO₃) fandtes under Gytjen i Bronden (se S. 211):
a. Nederst i Brønden:

Pisidium sp., talrige Skaller.
Valvata piscinalis, et Eksemplar.
Fiskeskæl.
Betula sp., en lille Pind.
Dryas octopetala, nogle Blade og Frugter.
Najas marina, en Frugt.
Salix polaris, en Kapsel og Grene (samt et fragmentarisk Blad?)
Scirpus lacustris, 1 Frugt.
Sparganium sp., 3 Stene.

b. 1 m. højere i Leret:

Pisidium sp.
Betula alba.
Najas marina.
Populus tremula.

Mellem Pæl 13 og 14 (jfr. S. 211).

Efter at Gytjen var gennemboret, børedes gennem 1,2 m. kalkholdigt Ferskvandsier; i Leret fandtes (man erindre, at Analyserne foretoges paa smaa Boreprover!):

a. Nederst i Borehullet:

Antitrichia curtipendula, en lille Mosstængel.

b. 0,3 m. højere (enkelte Kvartskorn af indtil 1 mm. Diameter):

Cristatella mucedo.
Pisidium sp.
Antitrichia curtipendula.
Hypnum viride.
Betula alba.
Betula subalpina?
Betula nana?

c. 1 m. højere, paa Grænsen mod Gytjen:

Cristatella mucedo.
Coleoptera.
Betula alba.

En mikroskopisk Undersøgelse af Leret fra det dybeste Lag i Brønden, foretaget af Prof. G. Lagerheim, førte ikke til noget Resultat.
Det humøse Sands Flora og Fauna.

Det humøse Sand er meget rigt på Fossilier; sammen med San-
det er nemlig talrige Planterester, Blade, Grene, Fro og Frugter,
skylde ud i det interglaciale Bassin; i Tabellen S. 227—231 er de i dette Lag fundne Arter opførte; alle Grene, Barkstykker o. lign. er fladtrykte, til Dels stærkt rullede; Froene er imidlertid ypperligt bevarede.

Gytjens Flora og Fauna.

Ved Pæl 8.

I brun Gytje, over humøst Sand:

Bythinia Leachi, 1 Laag.

Pisidium sp.

Valvata piscinalis.

Perca fluviatilis, Skæl.

Alnus glutinosa, 1 ♀-Rakle.

Fraxinus excelsior, 1 vingeløs Frugt.

Nuphar luteum, 1 fladtrykt Fro.

Quercus pedunculata, 1 Blad.

Tilia grandifolia, 1 Kapsel-Fragment.

Ved Pæl 11.

I brun (ikke kalkholdig) Gytje over humøst Sand:

Taphrina alni.

Picea excelsa, talrige Naale.

Taxus baccata, talrige Blade.

Alnus glutinosa, Frugter og Hunrakler.

Carpinus betulus, talrige Frugter.

Eupatorium cannabinum, 6 Frugter med Fnok, jfr. T. XII, Fig. 1—2.

Lycopus europæus, 1 Frugt.

Rumex sp.

Sparganium ramosum, 1 Frugtsten.

I Gytje (ikke kalkholdig) fra dette Sted fandt Prof. G. LAGERHEIM:

Spongilla lacustris.

Cladocera, Skaller.

Polypodiaceae, Sporer — samt

Picea (eller Abies), almindelig | Pollen

Pinus silvestris

15
Alnus
Carpinus
Corylus
Ericinæ
Quercus
Tilia
Ulmus

Pollen.

Ved Pæl 17.

I brun (kalkholdig) Gytje over humøst Sand:

Spongilla sp., gemmulæ i stor Mængde, dels isolerede, dels i hele Kager.
Nephelis sp., en Ægkapsel.
Cenococcum geophilum, smaa Peridier, c. 1 mm.
Picea excelsa, 1 Frø med Vinge.
Taxus baccata, 1 Blad.
Alnus glutinosa, Frugter.
Carpinus betulus, talrige Frugter; en af disse overtrukket med Vivianit.
Eupatorium cannabinum, talrige Frugter.
Lycopus europæus, 1 Delfrugt.
Oenanthe phellandrium, 1 Frugt.
Tilia europaea, 1 firrummet Frugt (Tavle XII, Fig. 9—10).

I kalkholdig Gytje fra samme Sted i Profilet fandt Prof. G. LAGERHEIM:

Spongilla sp.
Melosira sp.
Phacotus lenticularis.
Polypodiaceæ, Sporangier og Sporer — samt:
Picea (eller *Abies*), hyppigere end Fyr
Pinus silvestris
Alnus sp.
Carpinus
Corylus
Ericinæ
Graminæ
Quercus
Tilia sp.
Nymphæacæ; „Indre Haar“

I Gytje fra dette Sted fandt Cand. polyt. E. OSTRUP følgende Arter af Diatomæer, alle Ferskvandsformer:
Cymbella ventricosa Ktz., 1 Eksp.
Gomphonema intricatum Ktz. 1 Eksp.
Melosira arenaria Moore., et Par Eksp.
Melosira granulata (Ehr.) Ralfs, et Par Eksp., baade normal og rundpolet (jfr. Danske Diatoméjord-Aflæjeringer og deres Diatoméer, D. G. U. H. R. N. 9 Tav. II, Fig. 1).
Meridion circulare (Grev.) Ag., 1 Eksp.
Pinnularia sp. Et Brudstykke, vistnok **P. divergens** W. Sm.; i hvert Fald en Ferskvands-**Pinnularia**.
Et enkelt Kantstykke, maaske af en **Campylocyclus**.

I Skrænten paa Sydsiden af Banelinjen, lige overfor Profil A, over Sandet med de talrige Grankogler (jfr. S. 211) fandtes i brun Gytje:
Cristatella mucedo, meget talrige Statoblaster.
Plumatella sp., Statoblaster.
Picea excelsa, Naale.
Carpinus betulus, Nodder.

Gytjen er overalt meget fattig paa Planterester i Forhold til det humose Sandlag i Gytjen.

I de forskellige Lag ved Ejstrup fandtes følgende Dyr og Planter, ialt c. 140 Arter:

<table>
<thead>
<tr>
<th>Ejstrup</th>
<th>Ferskvandsler</th>
<th>Humust Sand</th>
<th>Gytje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyr:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongilla sp. (lacustris?)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cristatella mucedo</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plumatella sp. (T. XI, Fig. 1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anodonta mutabilis (T. XI, Fig. 1)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bythinia Leachi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— tentaculata</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pisidium sp.</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Valvata piscinalis</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nephelis sp. (octoculata?)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Piscicola sp. (T. XI, Fig. 3)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Notaspis sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnidae</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ostracoda</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Atherous subfuscus Gyll.</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Donacia sp. Vingedækker</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Telanocera sp., Larve- og Puppe-Hud.</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

15°
<table>
<thead>
<tr>
<th>Ejstrup</th>
<th>Forsk-</th>
<th>Humøst</th>
<th>Sand</th>
<th>Gylden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phryganider, Larve-Hylsterlåg (T. XI, Fig. 2)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abramis brama, Svælgtrand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprinoidæ?, Skæl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esox lucius, Skæl og Knogler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perca fluviatilis, Skæl</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castor fiber, en guavet Pind</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervus dama, Skeletdele</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodentia, Ekskrementer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciurus sp., guavede Grankogler</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phacotus lenticularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylodiscus sp.?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymbella ventricosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphonema intricatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melosira arenaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— + granulata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridion circulare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnularia sp. (divergens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitella sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthriniun naviculare E. Rosstr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenococcum geophilum Fr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daldinia concentrica (Rott.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipladia taxi (Sow.) de Not.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankia alni (Ellerodder)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnomonia sp. (Ahnøg-Blade) (T. XI, Fig. 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lophodermium Neesi (DCBry) (Hex-Blade)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhytisma salicinum (Pers.) Fr. (paa Bladfragm.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosellinia mammiiformis (Pers.) Ces. (paa Ved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>— + sordaria (Fr.) Rehm. (paa Ved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taphrina alni (Sadeb.) (T. XI, Fig. 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marchantia polymorpha L. (1) 1) (T. XI, Fig. 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrocladium cuspidatum (L.) Lindb. (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblystegium cordifolium (Hedw.) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomodon vitticulosis (L.) H. T. (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antitrichia curtipendula (L.) BrID. (12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Tallet i Parentes bag Mossets Navn angiver det Antal Prover, i hvilket Arten er fundet.
<table>
<thead>
<tr>
<th>Species</th>
<th>Forslev</th>
<th>Humleød</th>
<th>Gylge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophyllum cuspidatum (L.) Lindb. (4)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Astrophyllum pseudopunctatum (B. T.) Lind (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- punctatum (L.) Lindb. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- silvaticum Lindb. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- undulatum (L.) Lindb. (2)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ceratodon purpureus (L.) Brid. (1)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranum Bonjeani de Not. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- parietinum (L.) (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- scoparium (L.) (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hylomium paticinum (L.) (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- proliferinum (L.) Lindb. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- squamosum (L.) Br. eur. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- triquetrum (L.) Br. eur. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypnum lutescens Huds. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- praelongum L. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- purum L. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- rctabulum L. (1)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- sericeum L. (8)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- striatum Schreb. (7)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- Schwartzii Turn. (7)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>- velutinum L. (2)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- viride Lam. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isothecium myosuroides (L.) Brid. (6)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- myurus Brid. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neckera complanata (L.) Hüb. (12)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- crispa (L.) Hedw. (8)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polytrichum attenuatum Menz. (1)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Porothricum alopecurum (L.) Milt. (8)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stereodon cupressiformis (L.) Brid. (2)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thydidium tamariscifolium (Neck.) Lindb. (8)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aspidium aculeatum</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Picea excelsa (T. XI, Fig. 7—11)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td></td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Taxus baccata (T. XII, Fig. 12—13)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acer sp. (T. XII, Fig. 5)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ajuga reptans (T. XI, Fig. 27)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Tissues</td>
<td>Humod Salt</td>
<td>Geje</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Betula alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>subalpina</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>nana</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>odorata</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bidens tripartitus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carex riparia</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>cfr. stellulata</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carpinus betulus (T. XII, Fig. 3—4)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carum carvi? (T. XII, Fig. 16—17)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cicuta virosa? (T. XII, Fig. 15)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cirsium lanceolatum (T. XII, Fig. 6—7)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Corydalis cava</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Crataegus sp.?</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dryas octopetala</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eupatorium cannabinum (T. XII, Fig. 1—2)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Helix aquifolium (T. XI, Fig. 25—26)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Iris pseudacorus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lycoptus europaeus (T. XII, Fig. 18)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Menganthes trisoliata</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Najas marina</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nuphar luteum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nymphae alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oenanthe phellantrium (T. XII, Fig. 14—18)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxalis acetosella (T. XII, Fig. 19)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polygonum taphithofolium (T. XII, Fig. 20)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Populus tremula (T. XI, Fig. 14—18)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Potamogeton filiformis (det. I. P.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Friesii (det. I. P.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>natans</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>perfoliatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>polygonifolius</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pusillus (det. I. P.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus pedunculata</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plant Species</td>
<td>Ferskvandshvile</td>
<td>Humøst</td>
<td>Gylle</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rubus idæus</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>— sp. (T. XII, Fig. 23—24)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rumex maritimus</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sagittaria sagittifolia (T. XI, Fig. 21)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Salix polaris</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sambucus sp. (T. XII, Fig. 21)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Scirpus lacustris</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sparganium ramosum</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>— sp.</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stachys silvatica</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stratiotes aloides</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tilia europaea (T. XII, Fig. 9—10)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>— grandifolia</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Torilis anthriscus (T. XII, Fig. 11—12)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Typha sp.</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ulmus sp. (T. XI, Fig. 22—24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola palustris (T. XII, Fig. 22)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Viscum album (T. XI, Fig. 28—29)</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>? (T. XII, Fig. 8)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Som det fremgaar af Profil A (Fig. 25) er der næppe Tvivl om, at vi her har en interglacial Ferskvandsaflejringer in situ, et Ferskvandsbassin, i hvilket først er aflejret lagdelt, stenfrit Ler med Polarplanter (Dryas, Salix polaris o. s. v.), senere Birk og Bævreasp. Leraflæjringen efterfulgt af en Gytjedannelse under betydeligt gunstigere Klimatforhold — saaledes som Gytjens og det humøse Sands rige, tempererede Flora og Fauna viser det — og efter Gytjedannelsens Ophor fulgte atter en Leraflæjring, som dog for største Delen er bleven borteroderet og hvis Fossil-Indhold kun i ringe Grad er kendt. Selv om de faa Fossiler i det øvre Ferskvandsler ikke tillader nogen sikker Slutning angaaende de Klimatforhold, hvorunder dette Ler afsattes, kan den Omstændighed, at der i Leret ikke er fundet Rester af andre Træer end Birk, El og Bævreasp, vel nok opfattes som Tegn paa en Nedgang i Temperatur; alene den Omstændighed, at Gytjeaflejringeren afløses af en Leraflæjring, tyder herpaa.
Planteforendes Lag ved Kolding.

I Kolding By og dens nærmeste Omegn er der i de sidste Aar fundet flere forskellige diluviale Lag med Planterester, dels med et arktisk og subarktisk Præg, dels med et mere tempereret Præg. Af disse Fund er komne til min Kundskab, skyldes Hr. Kæmner J. O. Brandorff's store Interesse for Geologien og Arkeologien.

Mariegade i Kolding. Paa Kolding Aadalens stejle Sydskrænt er der ved Grundudgravninger ved Mariegade, især i dennes østlige Del, i umiddelbar Nærhed af Klædefabrikken (det sydvestlige Kryds paa Fig. 31), flere Gange fundet Torv under 1—2 m. Moræne-ler. Ved mine Undersøgelser i Efteraaret 1908 fandtes i en for-
muldet Torvemasse talrige Frugter af Carpinus betulus og enkelte egergnavede Koglerester af Picea excelsa.

I Torven og i Overgangslaget over denne fandtes desuden enkelte Eoliter.

Undersøgelsen af Materialet fra denne Mose, der til Dels er foretaget i Forening med Statsgeolog, Dr. Victor Madsen, er endnu ikke afsluttet; Mosen vil blive nærmere omtalt i Beskrivelsen af Kortbladet Fredericia.

![Grusgraven ved Skovmøllen ved Kolding 1902.](image)

Blokkene ved Profilets Fod stammer fra Moreneleret, der forovrigt indeholdt meget indælt plastisk Lær, hvorfor der den følgende Vinter skete store Skred her.

Grusgraven ved Skovmøllen, Kolding (østlige Ring paa Fig. 30 samt Fig. 31). Under de store Udgravninger, der foretages her i 1902—1903, fandt Hr. Brandorff og Hr. Bogholder S. Borch et tyndt Lag af en brun, sandet Gytje, hvoraf de sendte mig en større Prøve; senere besøgte jeg Profilet, som viste følgende Lejringsforhold:

\[
\begin{align*}
2 - 3 \text{ m. & Moræneler.} \\
c. 10 & - lagdelt Sand og Grus. \\
0,10 - 0,20 & - Gytje. \\
2 & - + Sand.
\end{align*}
\]

Gytjelaget var synligt paa en Strækning af c. 20 m. i Grusgravens Væg; det indeholdt navnlig en Mængde Mosstængler, især af Amblystegium exannulatum. I dette Lag fandt jeg følgende Dyr og Planter:
Daphnia spp., talrige Ephippier af forskellige Arter.

Centococctum geophilum.

Amblystegium exannulatum, meget talrig.

... fluitans, talrig.

Armeria maritima, talrige Bægere.

Betula alba, 5 Frugter.

... nana, 1 Ἐ- Rakleskæl, 2 Frugter.

Batrachium cfr. confervoides, talrige Frugter.

Callitriche autumnalis, ret talrige Frugter.

Carex spp., talrige Nødder uden utriculus.

Salix polaris, talrige Blade.

Brønd paa Dyrehavegaards Mark, Vest for Skovmøllen.
(Vestlige Ring paa Fig. 30). Ved Gravning af en Brønd paa dette Sted fandt Brøndgraver LUND, Kolding, i 1905 et Lag „sort, fed Mosejord“, c. 8,5 m. under Jordoverfladen; Hr. BRANDORFF sendte mig en mindre Prøve af Laget til Undersøgelse.

Ifølge Hr. LUND fandtes følgende Lag i Brønden:

<table>
<thead>
<tr>
<th>Lag</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5 m.</td>
<td>sandblandet Ler [Moræneler].</td>
</tr>
<tr>
<td>2</td>
<td>blodt Sand.</td>
</tr>
<tr>
<td>2</td>
<td>skarpt Sand.</td>
</tr>
<tr>
<td>0,15—0,20</td>
<td>„Mosejord“, skraat liggende, tykkest imod Nord.</td>
</tr>
<tr>
<td>2 -</td>
<td>+ rent, næsten hvidt Sand.</td>
</tr>
</tbody>
</table>

Da der var gravet c. 2 m. i det nederste Sand, kom der Vand i tilstrækkelig Mængde, og Gravningen standseses derfor.

„Mosejorden“ var en kulsort, blod, fed Masse, hvori kun meget faa Planterester var synlige for blotte Øjne; nogle smaa, glinsende Trækulstykker (af et Naaletræ) faldt dog let i Øjnene; det maa vistnok opfattes som en ejendommelig Gytjeform, men fortjener en grundigere Undersøgelse paa Stedet.

Ved Slaemning af den tilsendte Prøve fandtes:

Centococctum geophilum, talrige smaa Peridier.

Picea excelsa, to forkullede Bladfragmenter.

Potamogeton sp., en enkelt Kim.

Typha sp., talrige Frugter.

Desuden fandtes en Del hidtil ubestemte Frohinder, vistnok af *Nuphar* og (eller) *Nymphæa*; Froskallen af disse Fro var forsvundet.

Om dette Lag staar i Forbindelse med det ovenfor omtalte i Grusgraven ved Skovmøllen, maa senere Undersøgelser afgore.

Udgravning ved Sukkerfabrikken, Syd for Kolding Aa.
(Se Fig. 31, Krydset mellem de to Teglværker). Paa Foranledning af
Hr. Brandorff samlede Statsgeolog, Dr. Victor Madsen i 1907 en Del Prover af lose Blokke af Torv og andet planteførende Materiale, der laa indlejrede i den overste Moræne i Bakkeskrænten ned mod Fjorddalen).

Nogle Blokke bestod af hele store Tuer af Arctostaphylos alpina eller tætte Mostuer; medens de fleste andre diluviale planteførende Aflejringen, som htidil er kendte, er Ferskvandsdannelser, staar vi her aabenbart overfor Rester af gamle diluviale Landoverflader med Tundra-Vegetation, hvilket blandt andet ogsaa viser sig derved, at alle eller de fleste Blade af Fanerogamerne er forkrollede og sammenrullede, medens de i Ferskvandslag plejer at ligge fladt udbredte. Det eneste tilsvarende Fund, jeg kender, er om- talt af N. O. Holst (1907) fra Bjæresjöholms Teglværksgrav ved Ystad, hvor der i den nederste Moræne fandtes hele Tuer af Arctostaphylus uva ursi, Dryas octopetala og Tortula ruralis.

I det store Materiale fandt jeg følgende Dyr og Planter:

Limnea peregra.
Pisidium (Fossarina) sp.
Planorbis parvus.
Pupa (edentula?) musorum.

Succinea sp.
Oligochæt-Kokoner.
Midder (Notaspis?), faa Eksemplarer.

Dipter-Pupper.
Otiorrhynchus sp.
Phryganidé-Larvehylstre.
Lagopus?-(Rype?) Ekskrementer.
Mus eller Myodes?, Ekskrementer.
Lagomys hyperboreus?-(Pibe.hare?) Ekskrementer.

Cenococcum geophilum, enkelte smaa Eksemplarer.
Amblystegium cfr. confervoides.

polygamum.
radicale.
rotae.

Astrophyllum medium.

Ditrichum flexicaule.
Hypnum salebrosum.
Leersia rhabdocarpa.
Swartzia montana.

Thyidium Blandowii, Juniperus communis, et Fro.
Arctostaphylos alpina, talrige Fro, delvis sorte og fladtrykte; Blade med velbevaret takket Bladrand; Grene og Stammer.
Betula nana, Blade, Grene, Rakleskæl og Frugter, talrig.
Salix cfr. phylicifolia, hele Tuer, Blade og Kapsler, talrig.

Diluvial Torv paa Lyngs Odde.

Da jeg i August 1902 besøgte Teglværksgraven paa Lyngs Odde ved Fredericia, fortalte Arbejderne mig, at de samme Dag havde fundet „Tang“ i Leret; de havde opbevaret „Tangen“, som viste sig at være Sphagnum tørv, meget fast og sammenpresset. Efter Folkenes Sigende var der ikke før fundet Plante- eller Dyrerester i Leret. Profilet i den Lervæg, hvori Torven fandtes, var:

1 – 2 m. Moræneler med store Blokke.
2 – 3 - lagdelt, stenfrit Sand med diskordant Parallelstruktur.
2,5 – + stenfrit Brokkeler med tynde Sandstriber.

Torven fandtes i Brokkeleret, c. 1 m. over Gravens Bund; jeg fandt ogsaa selv enkelte smaa Stykker Torv i Leret og konstaterede, at der her kun var Tale om en lille løs Torvellage, c. 0,6 □ m. stor, c. 1 cm. tyk.

I Torven fandtes en enkelt Hasselnød, gnvet af Mus; Torven selv var dannet af Sphagnum cymbifolium.

Brokkeleret er overmaade haardt, saa haardt, at man ved Gravningen ikke anvender Spade, men en spids Hakke, der drives ned i Leret med Trækolle.

Mose ved Rostrup.

I Oktober 1901 meddelte Hr. Kommunelærer H. N. Rosenklær mig, at Brøndgraver Elstrøm i Jelling ved en Brøndgravning havde fundet Torv i c. 5 m. Dybde paa Rostrup Mark; Rostrup ligger i det østjyske Moræneterræn, c. 9 km. VSV. for Jelling; Mosens Be-
liggenhed er paa Kortet Fig. 32 belegnet med et Kryds. Jeg besøgte Stedet i August 1902 og lod her grave en Brond.

Profilet var:

4,6 m. lagdelt Sand.
0,6 - Torv.
0,05 - Gytje.
Sand, meget vandførende.

Fig. 32. Mosen ved Rostrup (X).
Udsnit af Generalstabens Atlasblad Jelling.
1:40,000; Kurvernes Æquidistance 10' = 3,14 m., Højdetal i Fod.

Paa Overgangen mellem det overste Sand og Torven fandtes som sædvanlig et brunligt, leret-dyndet Sandlag, "Overgangslag", over Torven. I den overste Del af Tørven, en stærkt sammenpresset Sphagnumtorv, fandtes:

Calluna vulgaris og
Eriophorum vaginatum.
I den nederste Del af Torven, der var en sandet „Grentørv“, fuld af Grannaale og Pinde, fandtes:

Picea excelsa.
Carpinus betulus.
Potamogeton natans.
Rubus idæus.
Sambucus sp.

Frugtstene.
Spatganium ramosum.

Gytjelaget var ganske tyndt; i de få Smaabrokker jeg fik op af det, inden Bronden løb fuld af Vand, fandt jeg kun:

Centococcus geophilum og Carex sp.

Denne Mose faar en særlig Interesse derved, at den ligger Øst for Israndslinjen; paa Grund af de uheldige Vandforhold fik jeg kun lidet op af Gytjen og den nederste Del af Torven, men til-strækkeligt til at se, at Mosen i store Træk har samme Flora som de interglaciale Moser Vest for Israndslinjen.

Mose ved Silkeborg.

I 1894 fandtes ved en Brondgravning i *Silkeborg* By, c. 6 m. under Jordoverfladen, et Torvelag, dannet af Mosser. Gennem en Notits i „Silkeborg Avis“ fik jeg Underretning derom, og Redaktør Sørensen i Silkeborg gav mig velvilligst nærmere Oplysning om Fundet og sendte mig en Prøve af Torven.

Cand. mag. J. P. J. Ravn fik gennem Inspektoren ved Silkeborg Vandkuranstalt, Hr. Gesxer, ogsaa Meddelelse om Fundet og Prøver af Torven; Hr. Ravn har velvilligst stillet disse til min Raadighed. Jeg besøgte i 1898 Stedet, der ligger paa Skrænten ned mod Gudenaa; men det var da saa tæt bebygget, at Gravning var umulig. Torven var stærkt sammenpresset og af lys brun Farve; den er dannet af

Amblystegium cordifolium, tørvedannende,

exannulatum, i stor Mængde,

* giganteum*,
Sphagnum acutifolium.

Af Fanerogamer fandtes kun:

Menganthes trifoliata, Fro.
Carex sp., Frugter.
Laget havde efter de tilsendte Meddelelser en Mægtighed af nogle få Tommer; det var dækket af Sand, „den overste Flade af et ganske tyndt Lag fed Klæg“.

Dette „Klæglag“ over Mostorven forekommer mig at tale for, at vi her har et tyndt Torvelag in situ, medens jeg ellers efter Beskrivelsen vilde være tilbojelig til at anse det for en løs Blok.

Andre Lokaliteter i Jylland.

Foruden fra de hidtil omtalte Lokaliteter har jeg faaet adskillige Meddelelser om Fund af „underjordisk Tørv“ fra forskellige Egne af Jylland. Meddelelserne er oftest meget sparsomme, og af forskellige Aarsager har jeg hidtil ikke haft Lejlighed til nærmere at undersøge Forholdene. For Fuldstændigheds Skyld meddeles dog de mig givne Oplysninger.

Bovbjerg. En Prove herfra er samlet af Højskoleforstander, cand. theol. Christoffer Baagø for omretn 40 Aar siden; han meddeler derom i Brev af 13. April 1903 følgende: „Det var den østligste, overste flig af et torvelag, der lå over en alen under grønsværet; det var da skredet en favn ned; meget mere var styrtet helt ned og toges af havet. Jeg har nu i 2den udgave af Trap’s topografi truffet en beretning om et besog paa Bovbjerg 1858 — altsaa en halv snes aar, før jeg var der. Den er meget oplysende:

«Det mærkeligste var en dyb indskæring, hvorved er blottet et interessant lag af martorv, nemlig: a) ældste formation, 1—1½ alen i gennemsnit, b) 1½ alen kompakt ler, c) anden formation torv, ½ alen i gennemsnit, d) 1 alen grus og ler og endelig overst, e) grønsvær c. ½ alen.« Det har altsaa været den sidste rest af det overste interglaciale torvelag, som jeg saa paa skred mod havet."

I Torven fra Bovbjerg fandtes:

Amblystegium giganteum (Schimp.).
Sphagnum teres Angstr.

Alling. Brondgraver Christiansen har ligeledes meddelt mig, at han ved Alling, Nordost for Rye, har fundet Torv i c. 13—14 m. Dybde.

Skarild. I den S. 44 omtalte Boring ved Skarild Andelsmejeri ved Skjerne Aa angives 1 m. Torv under 7 m. Sand; da jeg ikke kender Lokaliteten af Selvsyn og ikke har set Prover af Torven, kan jeg ikke sige noget bestemt om den, men det er vel rimeligst at antage, at den er interglacial.

Testrup. Ved Lergravning til et Teglværk ved Testrup mellem Skanderborg og Horsens fandt en Arbejdsmand for omtrent 16 Aar siden Torv, c. 11/2 Alen (1 m.) dybt i Leret; Torven var kun en god Tomme tyk og havde kun meget liden Udstrækning, saa nærmest ud som en „Matte“. „Det kunde da nærmest se ud som en Torveflage, fort bort andensteds fra og aflejret her,“ siger Hr. Baago, hvem jeg ogsaa kan takke for denne Meddelelse. De geologiske Forhold i Teglværksgraven kender jeg ikke; men Beskrivelsen af Torveflagen minder meget om Forholdene i Lyngs Odde Teglværksgrav.

I 1906 har jeg sammen med Milthers besøgt Lokaliteten, som vil blive nærmere beskrevet af ham i Beskrivelsen til Korthbladets Bække; en flygtig Undersøgelse af Planteresterne viste, at Gytjen indeholder den almindelige interglaciale Flora: Picea, Carpinus o. s. v.

I Frederikshaab Plantage fandtes ved en Bronggravning for c. 20 Aar siden (hos Opsynsmand Laust Rasmussen i Plantagen) „Muldjord“ i c. 2 m. Dybde under Overfladen; „Muldlaget“ var c. 1 m. tykt, brun og „bladede op som Papir“.
Den fynske Øgruppe.

I forskellige af Eem-Allejringernes (Cyprinalerets) Ferskvandslag er der fundet Planterester, som jeg har omtalt i Victor Madsen, V. Nordmann og N. Hartz: Eem-Zonerne (1908, S. 103 ff.).

I en „Afhandling om Torv, om Torv-Mosernes egentlige Væsen og Natur“ af en anonym Forfatter (1762, S. 313) meddeles bl. a. følgende:

„En saadan Torv-Grund findes paa Øen Thaasinge, ved Fyen, i Bregninge-Mark, hvor der i en ophoyed Strækning, to til tre Alne dybt neden under grov Sand og Leer, antreffes et slags Torv, som nogle Steder findes i et skiaævlig liggende Lag, og bestaaer meestendeals af en meget fiin, los, lang, og spædstængled Mos, hypnum fluitans vel scorpioides, hvilken giver Torven Anseende som et Filt; paa nogle Steder derimod, hvor Grunden er vaadere, er denne Torv lidet mere sammenpakket, sort og formulned."

Er det interglacial Torv?

Sjæland.

Tjornegaards Teglværksgrav ved Gjentofte.

„Det sanda prøvet utgjordes af en starkt sandhaltig (fin sand) torf, af en beskaffenhed, som man knappast antræffer i recenta mossar i lager, hvilka föra vattenväxters från etc.
Den är nämligen kortare i brottet, mycket kompakt och något brunkolsartad; visar salunda karaktärer, som tyda på betydande sekundära förändringar af densamma. Af de koprogena bildningar, som uppstå i nutiden, står den, om saväl flora som petrografisk beskaffenhet medtages, närmast v. Post's dy. Mot-svarande torf (detta ord i utsträckt mening) känner jag endast från norra Tyskland, särskilt från de sannolikt under interglacial tid bildade allagringarna vid Klinge i Brandenburg samt i Holstein. Denna öfverensstämmelse är dock på intet sätt något som helst bevis

Fig. 33. Interglacial? Torv i Tjörnegaards Teglverksgrav ved Gjentofte.

för nu ifrågavarande torfs interglaciala ursprung, då ännu de post-glaciala tortlagren i nämnda länder är så godt som okända.

Utaf det sända profvet slammades ungefär 500 k b. m., hvilka utom en betydande återstod af i kornstorlek nästan jämn, hvit sand äfven gåfvo ytterst rikligt frön af diverse växtarter. Flórans artantal är ej stort, men individrikedomen af t. ex. vissa fröslog är ovanligt stor. Nedanstående arter anträffades 1):

- Cristatella mucedo, c. 50 vinterägg af denna sötvattensbryozo ärro funna.
- Cladocerer, flere arter, vinterägg rikligt, c. 30 utplockade.
- Insektlåmningar af puppor m. m.

1) Jeg har ordnet Fortegnelsen over de af Gunnar Andersson fundne Plante- og Dyrelevninger overensstemmende med Rækkefolgen i mine andre Fortegnelser.

N. Hartz.
Characeae, sporkärnor rikligt af en art tillhörande denna familj. De torde kunna bestämmas.

Amblystegium sp., 1 stycke.

Batrachium sp., 18 karpeller. I storlek m. m. öfverensstämmande dessa alldeles med dem, som ofta anträffas i dryaszonen och björkzonen i de efter istiden bildade mossarne. Dessa är sin sida kunna ej skiljas från sådana af den nu lefvande, nordliga B. confervoides. De här funna fossila kunna således tillhöra denna art, men artbestämning inom detta kritiska släkte torde ej kunna företagas endast med ledning af karpellerna.

Betula alba, c. 22 vinglösa frukter; formen talar liksom öfrriga förhållanden för att de här stamma från B. odorata. Då emellertid bestämningen ej kan bli fullt säker, bör kollektivnamnet användas.

Betula nana, 1 hångefjäll, c. 7 frukter; sannolikt sällan alla sju hit, men en möjlighet finns dock för att de kunna härstamma från mellanformerna mellan B. nana och B. odorata. Ett par torde dock otvifvelaktigt tillhöra den förstnåmda.

Comarum palustre, 2 karpeller, nästan till oegenkännelighet sammanpråssade.

Hippuris vulgaris, 1 nöt.

Menyanthes trifoliata, c. 300 från utplockade, ytterligare 20—30 torde ha funnits. Variationen i dessa annars så likformiga fröns utseende är ovanligt stor. Detta kan dock möjligen till en del hero på de under Potamogeton omtalade pråssningsfenomenen; detta er säkert för ett par frön.

Myriophyllum alterniflorum?, 1 starkt hoppråssad delfrukt.

Potamogelon (gramineus?), c. 300 småfrukter. Dessa rundade, nästan äggformiga frukter torde med säkerhet kunna till arten bestämmas, ehuru jag för ögonblicket ej har tillräckligt jämförelsematerial därför. De äro på grund af sin fastare byggnad endast mera sällan underkastade de under en följande art omtalade pråssningsfenomenen.

Potamogelon prælongus, 7 småfrukter. Särskilt tvånne äro jättestora, större än några jag sett förut af denna art. Ytterligare några få kunna möjligens finnas bland de nedan omtalade pråssade fruktarna.

Potamogelon sp., c. 250 småfrukter. Möjligens föreligger tvånne skilda arter bland dessa. Fruktarna äro ungefår af P. natans's storlek men något mera plattade. En stor del, ungefär mellan 30—40% af dessa frukter, ha efter sin inlaging i torven varit underkastade betydliga förändringar, i det att de blivit pråssade i olika rikt-

Fig. 34. Tvårsnitt af prässade *Potamogeton*-frukter.

a. starkt prässad från sidan, *b.* starkt prässad framifrån i pilens riktning; *c.* ytterst obetydligt prässad frukt, endast något på högra siden hoptryckt. Möjlig en annan art än *a.* och *b*. Den punkterade linjen (i fig. *a.*) anger fruktens utseende före behandlingen med xylol, hvarigenom faran, i hvilken embryet legat, upspärrats. (Del: Dr. Gunnar Andersson, Stockholm).

Det synes efter Torvens Beliggenhed og Beskaffenhed, som om det har været en los Flage i Morænen af diluvial Torv, antagelig af interglacial Alder. Men det er næppe muligt nu at faa fuld Klarhed over dette Sporgsmål; hvis Torven er interglacial, har den Interesse som Danmarks østligste Forekomst af interglaciale Aflejringer.

Birkerod.

Brondgraver Hans Nielsen, København, meddelte mig i 1898, at han ved en Brondgravning ved Ebb erødgaard, i Næheden af Birkerod, i c. 6 m. Dybde fandt T orvebrokker i Leret; nærmere Oplysninger herom savnes.

Grevinge.

Ifolge Meddelelse fra Pastor H. P. H. Gj evnoe fandt Skræddermester Hansen i 1907 ved en Brondgravning til Vandvæket i Grevinge (O prettyred) i en Dybde af c. 11 m., under forskellige Lag af Ler, Mergel og Sand, et ganske tyndt, torveagtligt Lag, hvori tydeligt kunde ses „Mostrævler og Rodder af Birketræer“. Bronden ligger c. 45 m. o. H., c. 220 m. Nordvest for Grevinge Kirke.

I den tilsendte Prove fandtes følgende Arter:

Barbula rubella, sparsom.
Bryum ventricosum, talrig.
Campylium Sommerfeltii, talrig.
Ditrichum flexicaule, talrig.
Mollia fragilis, talrig.
246

Swartzia montana, talrig.
Betula papyrifera, et Blad.
Dryas octopetala, Grene, Blade, Frugter.
Salix polaris, Blade.
— reticulata, Blade.

Om der her foreligger et faststaaende Lag eller en løs Blok, kan ikke afgøres; den sidste Mulighed er sandsynligst.

Moen.

I det af V. Hintze samlede Materiale af Gytje fra Græstarygfald paa Moens Klint (Victor Madsen, V. Nordmann og N. Hartz, 1908, S. 237) har Prof. G. Lagerheim og jeg konstateret følgende Arter:

Spongilla lacustris.
Botryococcus Braunii.
Chara sp.
Pediastrum Kawraiskyi.
Picea excelsa, Pollen.
Pinus silvestris, Pollen.
Betula sp., Pollen.
Typha sp., en Frugt.

Fundet af Picea-Pollen saavel som de af V. Hintze (l. c.) meddelte Lejningsforhold gør det i højeste Grad sandsynligt, at Laget er interglacialt; derimod finder Nordmann — paa Grund af den artfattige Fauna i det overliggende marine Sand — det ikke forsvarligt at henføre det til Eem-Aflejringerne, „hvor fristende det end kunde være at slaa disse sikre interglaciale Aflejringer paa Moen sammen med Cyprinaleret, hvis interglaciale Alder er godtgjort af det foregaaende."

Bemærkninger om den interglaciale Flora og Fauna.

Vender vi os nu til Hovedmængden af de ovenomtalte interglaciale Allejring, saa vil vi se, at de — som allerede gentagne Gange nævnt — er karakteriserede ved Forekomsten af en Række Planter: *Picea, Carpinus, Brasenia, Dulichium* o. a., som ikke er kendte fra vore postglaciale Moser. De nævnte Planter hører netop til dem, der er karakteristiske for de andre interglaciale Aflejring i Mellemeuropa. Paa den anden Side har Floraen i det præglaciale planteforende Ler ved Tegelen (Cl. & El. Reid, 1907, et betydeligt ældre Præg.

Nogle Bemærkninger om de ovenfor nævnte Arter vil naturligt finde deres Plads her.

1) »Ich betrachte eine pflanzenführende Ablagerung als interglacial, wenn sie im Hangenden und im Liegenden von irgend welchen Glacialbildungen begrenzt wird, gleichgültig, ob dies Grundmoränen, Endmoränen, fluvioglaciale Bildungen oder dergl. sind; vorausgesetzt, dass die eingeschlossenen Planzen selbst (wenigstens ausserhalb der Centren der Vereisungsgebiete) ein nicht ständig glaciales Klima anzeigen und am Orte oder doch in der Nähe gewachsien sind, und vorausgesetzt ferner, dass die hangenden Glacialbildungen nicht erst in späterer Zeit sekundär, z. B. durch seitlichen Absturz, durch Abspülung oder dergl. über die pflanzenführenden Schichten geraten sind.«

og Grænen er jo som bekendt paa sin Vandring mod Nord gaæt uden om os.

Stratiotes aloides og *Hydrocharis morsus ranae*, der begge i Nutiden er almindelige i Danmark, er heller ikke fundne fossile i vore postglaciale Moser. Medens de i Nutiden yderst sjældent synes at sætte modne Frugter, er talrige Frø af dem fundne i vore interglaciale Moser (jf. Takle IX). Side 126—127 er omtalt Forskellen mellem de glatte og slanke *Stratiotes-Frø* fra de interglaciale Dannelser og de mere skulpterede Frø, der er fundne i Rav Pindelagene.

Af særlig Interesse er Forekomsten af de to ikke længere i Europa voksende Slägter *Brasenia* og *Dulichium*.

Brasenia, der i Nutiden lever baade i Nordamerika, Østasien, Afrika og Australien og som hyppigt optræder i Europas tertiære og interglaciale Lag, fandt jeg i Mosen paa Tøesbøl Mark; i 1907 fandt jeg den sammen med *Picea, Carpinus, Dulichium* og det sædvanlige interglaciale Planteselskab i den interglaciale Tørv paa Sylt.

Foruden de omtalte interglaciale „Ledefossiler“ forekommer saa godt som alle vore nulevende Skovtræer (undtagen Bogen) og talrige Buske og Urter i de her behandlede Aldejinger; af dem skal jeg dog her kun omtale Hasselen (*Corylus avellana*). De særlig i Øjne faldende

Mose paa Korthbladet Trelleborg, i 1.25—1.30 m. Dybde i en gulagtig Gytte under Tørven.

Indtil nærmere Oplysning foreligger om Fundforholdene, vil det være vanskeligt at skonne om disse Funds Betydning.

Af de i de interglaciale Aflejringer fundne Dyrelevninger skal jeg her kun omtale Levningerne af de højere Hvitrøldyr.

Det er mærkværdigt faa Rester af Pattedyr og Fugle, der er bevarede i vore interglaciale Lag; de eneste sikre Knogler er Daadyrets fra Hollerup 1) og Ejstrup.

Daadyret (Cervus dama). De hidtil kendte Rester af dette Dyr er omtalte af H. WINGE (1904); ved Hollerup er der senere gjort to nye Fund, idet Formanden ved Hollerup-Værket, Hr. P. FILIPSEN, i 1904 indsendte til mig en Del Knogler, som H. WINGE bestemte til Daadyr. Knoglerne fandtes i den østlige Bakke, c. 15 m. nede i Jorden (jfr. N. HARTZ & E. ØSTRUP, 1899). Profilet var paa Findestedet, efter Hr. FILIPSEN's Opgivelse:

12 m. Sand.
2,5- „Mo“ (Diatoméjord).
0,6 - Sand.
1,0 - „Mergel“ (Ferskvandskalk).

Knoglerne laa mellem Sandet og Ferskvandskalken; de bestod af Brudstykker af et Horn (som i Størrelse og Form ganske svarer til det af H. WINGE i. c. afbildede Horn fra Ejstrup), et Stykke af Pande- skallen med paasiddende Rosenstok samt nogle Hvirvler og Ribben.

1) Min Angivelse (N. HARTZ & E. ØSTRUP, 1899) af Kronbjørn (Cervus elaphus) fra Hollerup har (H. WINGE, 1904) vist sig at være fejlagtig.
Som ovenfor nævnt (S. 143 og 167) kan de i forskellige Moser fundne Ekskremente af et Hjordefy maaske stamme fra Daadyr.

De øvrige Spor af Pattedyr er dels Ekskremente, dels gnavede Plantedele; paa denne Maade faar vi Oplysning om Forekomsten af Bæver. Egnen, Mus (Skovmuss?) og Pibehare.

Af Bæver (Castor fiber) kender jeg 3 Spor i vore diluviale Lag; I det humose Sand ved Ejstrup fandtes en lille Pind, meget fladtrykt (1 cm. lang. 9 - 3 mm. bred), som i den ene Ende er skraat overskaaret; Snittet viser tydelige Spor af Gnaver-Tænder, i Størrelse svarende til Bæverens. I Hypnumtorven (Brond III) i Tues.

bol-Mosen fandtes ligeledes enkelte smaa, bævergnavede Grantinde.

I Mineralogisk Museum's Samlinger blev jeg tilfeldigvis opmærksom paa en Pind (af Gran), sendt 1868 til Overlærer Fogh fra Pastor Pontoppidan, Olby Præstegaard ved Holstebro, sammen med et Stykke (Jura?) Kul. I det vedliggende Brev skriver Pastor Pontoppidan, at disse Genstande er fundne i en Morgelgrav, han lod grave i 1868, Pinden c. 5 Al. (3 m.) nede i Mergelen, der igen dækkedes af 3 Al. (1.9 m.) Ler. „Hvad der forekommer mig at være mest mæleliget ved det tykkeste Træ- eller Rosstykke, er den Maade, hvorpaa det er afstumpet i den ene Ende; thi dette synes næsten at være skue med et skjerrende Redskab,” skriver Pontoppidan. Grenen er en af en Bæver skraat overgnavede Gren med tydelige Spor af Bæverens Tænder; der sidder endnu lidt graat Ler paa Grenen; denne er brunliggraa, afbarket, glinsende, 10 cm. lang og c. 2 cm. i Tvaersnit.

Egernet (Sciurus vulgaris) har efterladt sig Spor i en Del afgnavede Granfogler i det humose Sand ved Ejstrup (S. 211); fra Prof. Dr. Stolley har jeg desuden faaet overladt en smuk, egernavet Grankogler fra den interglaciale Mose paa Sylt.

Mus (Skovmuss?). I forskellige Lag, som er omtalte i det foregaaende, er fundet Ekskremente af en lille Gnaver sammen med musegnavede Hasselnødder (jfr. Tavle XIII); saavel Ekskremente som Gnave kan muligvis hidrøre fra Skovmuss (Mus sylvaticus).

Pibehare (Lagomys sp.). I de lose Blokke af Tundra-Overflader i den ovre Mørene ved Kolding (S. 235) fandtes talrige smaa, kugle- eller linseformede Ekskremente, som Viceinspector H. Winge mener kan stamme fra en Pibehare.

De Sammenligninger, jeg i den Anledning har anstillet med Ekskremente af Lagomys-Arter, taler i høj Grad for, at Winge's Antagelse er rigtig. Fra Stockholm laante jeg gennem Prof. W. Leche et

sprøjtlagt Eksemplar af *Lagomys alpinus* fra Altaï; ved at opklippe dets Endetarm udtog jeg 3 Ekskrementer af denne; de var kuglerunde og lidt større end de fossile. — Gennem Prof. G. Tanfiljew i Odessa fik jeg en større Samling Ekskrementer af *Lagomys pusillus*, der i Storrelse, Form og Struktur udmærket stemmer med de fossile.

De fossile Ekskrementer, der øjensynlig oprindelig har været kuglerunde, er ved Tryk i Reglen blevne linseformede; deres Dimensioner er nu 3—4 mm. × 1—2 mm.; de bestaar af finttyggede Plantedele. I mine Samlinger fra senglacialt Ler ved Alle rød (D. G. F., Bd. 8, 1901) har jeg senere i det udsklæmmede Materiale fra Sandlaget 60 cm. over Gytjen fundet 4 smaa, kugleformede Ekskrementer af samme Udseende som de ovenfor nævnte, hvilket altsaa tyder paa, at en *Lagomys*-Art ogsaa har levet her i Landet i senglacial Tid.

Allerede Pallas (1778), der har beskrevet *L. pusillus*, omtaler dens smaa kugleformede Ekskrementer, der ganske ligner Hare-Ekskrementer *en miniature*. Arten er kendt fra Mellemeuropas diluviale Aflejringer („Steppefanaen“), men ikke tidligere fundet i Danmark.

Af Fugle har kun en Spætte-Art (*Picus sp.*) efterladt sig Spor i Form af aabnede og optrævede Grankogler, der fandtes i Mosen ved Bramminge (S. 185).

Af de her omtalte Pattedyr er der egentlig kun ét, som har Betydning for Opfattelsen af de Temperaturforhold, hvorunder de paagældende Aflejringer er dannede, nemlig Daadyræt. Saavel Egeren som Bæveren har nemlig (eller har haft) en særdeles ved Udredelse lige fra Middelhavslandene til op imod Skovvegetationens Nordgrænse, og saaænge man ikke med Sikkerhed kender den Art af Pibeherer, hvis Ekskrementer er fundne ved Kolding, kan man ikke sige mere end, hvad allerede Planterne oplyser os om, nemlig

¹) Nehring siger (1890, S. 184, Noten): »Da, wo es sich um blosse Unterkiefer und Extremitätenknochen handelt, ist es kaum möglich mit Sicherheit festzustellen, ob dieselben von *Lag. pusillus* oder von *Lag. hyperboreus* herrühren; man wird dann nach dem vorherrschenden Charakter der betr. Fauna die eine oder die andere Art vermuten dürfen.«
at dette Lag er dannet under arktiske eller subarktiske Forhold. Daadyret, som nu kun lever vildt i Middelhavslandene, peger derimod afgjort hen paa, at de Lag, hvori dets Knogler er fundne, er dannede under Klimaforhold, der var varmere end de nuværende i Danmark. I samme Retning peger også de Planter, som i Nutiden har deres Nordgrænse hos os, nemlig Carpinus betulus og Tilia grandifolia.

Sammenholder vi nu dette med, hvad der ovenfor er sagt om de for Lagene karakteristiske Planter, og med, hvad der tidligere (Side 156—160) er sagt om Brorup-Mosens Udviklingshistorie og Planternes Fordeling i Lagene, Forhold, der mere eller mindre fuldstændigt genfindes i Allejrenderne ved Ejstrup og Hollund Søgaard, saa forekommer det mig, at vi her har et fuldtud tilstrækkeligt palæontologisk Bevis for disse Dannelser's interglaciale Alder.

Bemærkninger om de geologiske Forhold.

De nævnte Ferskvandslags Flora viser, som ovenfor paapåget, at disse Lag ikke kan være postglaciale, men maa være dannede i en Interglacialtid. Uden at gaa nærmere ind paa de paagældende Egnes Geologi, vil jeg dog i al Korthed gøre nogle Bemærkninger om Ferskvandslagenes Beliggenhed i Forhold til de øvrige Jordarter; Bemærkningerne gælder navnlig Moserne ved Brorup og Hollund Søgaard. Om de Lokaliteter, der ligger Øst for den af Ussing (1903) paaviste Hovedopholdslinje for den sidste Nedvisning, kan intet sikkert siges, saa lange de geologiske Forhold i Kolding-Aadalens omkring de andre nævnte Lokaliteter i det østlige Jylland endnu ikke er nærmere udredede. Hvorvidt de planteførende Lag ved Fredericia og Trelle kun er lidet forstyrrede af Isen eller om de er fuldstændigt lose Flager, faar staa hen; Ejstrup-Laget maa derimod sikkert antages at ligge paa primært Leje; Profil A (Fig. 25, S. 206 fl.) viser os en tydelig Bassin-Udfyldning med uforstyrret Lagdeling og Lagfølge (Ler, Gytje, Ler).

Betrænger vi nu Tisltund Bakkeo, er de geologiske Forhold i store Træk følgende: Det nederste diluviale Lag er en typisk Bundmoræne, som jeg opfatter som en „nedre Moræne“, ældre end Overflade-Morænerne i det østlige Jylland. Derover ligger et mere eller mindre mængligt Lag (oftest nogle få Meter) af fluvio-glacialt Sand, gennem hvilket Bundmorænen, der har en meget bolget Overflade, hist og her rager oformet op. Det fluvio-glacialte Sand er dækket af et tyndt Lag (c. 1/2 m.) stenet Sand, som jeg efter dets hele Udseende og Beskaffenhed (spredte, usorterede Sten, Indhold af fint
Materiale i større Mængde end i det underliggende Sand, manglende Lagdeling) opfatter som en kortvarig og tynd Isbedæknings Bundmoræne.

Som ovenfor omtalt og afbildet ligger Moserne paa Bakkeøen under Lavninger, der tydeligt kan iagttages i Terræn-Overfladen; disse Lavninger er vel ligefrem et Bevis for, at Torvelagene ikke er flyttede; var de nemlig ældre, f. Eks. præglaciale, saa havde de sikkert været sammenpressede i den Transporten, og saa var der ingen Grund til, at de altid skulde ligge under en Lavning i Overfladen. Deres nojagtige Plads i den ovennævnte Lagfølge har dog kun kunnet konstateres med Sikkerhed for Moserne paa Tørvemos Mark, ved Skovlyst og Bramminge, hvor de hviler direkte paa Moræneler. For de øvrige Mosers Vedkommende er der hidtil kun konstateret Sand under Lag; men om dette Sand er fluvio-glacialt Sand eller Ferskvandssand, der er udskyldet i den Bassin, hvor Mosen er dannet, kan foreløbig ikke afgøres; den sidste Antagelse er dog vist nok rimeligst, da jeg f. Eks. i Sandet under Mosen i Brorup Stationsby fandt Planterester.

Intetsteds træder Moserne frem i Dagen uden noget Dække; dette er dog aldrig Moræneler, men Sandlag af større eller mindre Mægenlighed, varierende fra 1 til 5 m. Dette Sand opfatter N. O. Holst (1904, S. 447) som Flyvesand(!), medens A. Jessen (1905, S. 86 fl.) mener, at det er skredet, til Dels ogsaa skyllet eller blæst ud over Torven fra det omliggende Terræn. Transporten skulde, efter Jessen, hovedsagelig være sket under den Fremrykning af Indlandsisen, der fulgte efter Mosernes Dannelsel (Isen selv naaede dog efter Jessen's Meling ikke saa langt Vest paa), og den store Ophobning af Sne om Vinteren i Forbindelse med det pludselige Tobrud om Foraaruet maatte danne saa betydelige Vandmængder i Jordoverfladen, at de ovre Jordlag maatte blive grodagtige og skikkede til Udlydning.

Jeg kan dog ikke slutte mig til nogen af disse Opfattelser. At der i disse Egne næsten overalt har været Sandflugt i postglacial (og senglacial) Tid, er sikkert nok; men de anselige Lag af Sand med

1) Eksempelvis kan anføres, at der i Gildsøg Mose nær Bække findes Torvelag af komprimeret Sphagnum af indtil 0,5 m. Tykkelse, dækkede af en til flere Meter Flyvesand; ved Mosenhuse ved Løborg og lige Vest for Stavshede Plantage graves Torv under lidt Flyvesand (0,5—1 m.); ved Jøgestlund, hvor Torvelaget har en Tykkelse af c. 0,7 m., hviler det paa Sand og er overlejet af c. 0,3 m. Flyvesand; i Torven findes nogle faa Rester af Birk, Fyr og Eg. Ogsaa ved Lustrup, tæt Syd or Ribe, findes postglacial Sphagnumtorv med talrige, smukt bevarede Stængler og Blade of Tranebær) under metertykke Afløjninger af Flyvesand. Den største og mest bekendte Torvedannelse under Flyvesand ind i Landet findes ved Ulfborg; her optræder betydelige Torvelag (1—2 m. tykke), dannede af komprimeret Sphagnum, under indtil 4 m. Flyvesand.
Sten, der ligger over de interglaciale Moser, er absolut ikke Flyvesand, men af diluvial Alter.

I Profilerne over Moserne (særlig smukt over Holland Sogaards Mose) kan jeg gøre ganske den samme Sondring mellem det stenede Sand og det lagdelte fluvioglaciale Sand som i Sandgrave og andre Profiler udenfor Moserne; desuden taler de ovenfor omtalte, store Stene i Sandet over Moserne paa Tuesbol Mark og ved Lundtofte afgjort imod en Udskridning eller Udblæsning fra de hverken hoje eller støjle Bakker omkring Moserne.

Jeg kan derfor kun opfatte Sandet over Moserne, der ikke kan skilles fra det sædvanlige stenede Sand og Diluvialsand, som et Bevis for, at Moserne er ældre end den sidste Nedisning af Bakken — selv om Indlandsisen kun har ligget her en forholdsvis kort Tid og haft en forholdsvis ringe Mægtighed.

Det forekommer mig saaledes, at der her er givet baade palæontologisk og stratigraphisk Bevis for de fossilforende Lags interglaciale Alter; deres Flora og Fauna udelukker, at de kan være postglaciale, deres Lejringsforhold, at de kan være præglaciale. Under Forudsætning af, at der har været flere Interglacialtider i vort Land, viser Lejringsforholdene, at de fossilforende Lag maa være dannede i (denne Egns) sidste Interglacialtid.

Beviserne for, at Istiden i Europa og Nordamerika har været afbrudt af én eller flere Interglacialtider, høber sig op Aar for Aar, og „Monoglacialismens“ i de sidste Decenner saa faattlige (men meget skrivende) Tilhængere synes at tabe mere og mere Terren.

Hvorvidt der her i Landet har været én eller flere Interglacialtider, er et Sporgsmål, der vel endnu staar aabent; som bekendt har H. Menzel nylig (1908) udtalt sig for en „Mono-Interglacialisme“, medens de fleste europæiske og amerikanske Forfattere antager flere Interglacialtider. Fremtidige Undersøgelser maa afgøre dette Spørgsmål; for Danmarks Vedkommende ønsker jeg her kun at pege paa, at Boringerne ved Vejen (S. 187) har vist flere over hinanden liggende Tørvelag; dette Forhold kan næppe — ligesaaalidt som den øvrige europæiske og amerikanske Litteraturs talrige Angivelser af flere diluviale Tørvelag over hverandre — bringes i Samklang med Antagelsen af én enkelt Interglacialtid.
Fortegnelse over Danmarks interglaciale Flora og Fauna
(ekskl. den marine Flora og Fauna).
I denne Fortegnelse er optaget alle Dyr og Planter fra de ovenfor omtalte interglaciale Lag (saavel paa primær som paa sekundært Leje), samt fra Eem-Afhejringernes (Cyprinalerets) Ferskvandszone og fra de interglaciale Lag ved Hollerup, Fredericia og Trælle; de af E. Østrup fra disse Lag omtalte Diatoméer er dog af Pladshensyn ikke medtagne her.

Under Rubriken „Eem-Zonen“ er — foruden de af mig (1908) omtalte Planter — optaget de af V. Nordmann (1908) anførte Ferskvandsdyr; det maa bemærkes, at jeg i denne Rubrik har opført Flora og Fauna ikke blot fra de danske Lokaliteter, men ogsaa fra Stensigmose Klint paa Broager; *Limnanthemum* er kun kendt fra denne Lokalitet.

Under „Hollerup etc.“ er samlet de fra Hollerup, Fredericia og Trælle kendte interglaciale Dyr og Planter (D. G. U., H. R. Nr. 9); *Phacotus* og *Chrysomonadineæ* er senere omtalte herfra af Lagerheim (1902, S. 487).

Fortegnelsen omfatter ialt c. 313 Arter, 67 Dyre- og 246 Plantecarter.
<table>
<thead>
<tr>
<th>Species</th>
<th>Brostrup</th>
<th>Teshbol</th>
<th>Stovlsøyt</th>
<th>Halligør</th>
<th>Lerrad</th>
<th>Bramsringe</th>
<th>Halland Sønd</th>
<th>Esstrup</th>
<th>Kolding</th>
<th>Restrup</th>
<th>Silkeborg</th>
<th>Thornegaard</th>
<th>Grevinge</th>
<th>Mesø</th>
<th>Eem-Zonen</th>
<th>Hollerup etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphitremia flavum</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongilla lacustris</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crisatella muceda</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Plumatella sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta, Kokoner</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nephelis sp. (octoculata?)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscicola sp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Anodonta mutabilis</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bythnia Leachi</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" tenuculata</td>
<td></td>
</tr>
<tr>
<td>" var.</td>
<td></td>
</tr>
<tr>
<td>Limnaea ovata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" peregra</td>
<td></td>
</tr>
<tr>
<td>" stagnalis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Neritina fluviatilis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Paludesstriina marginata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pisidium amnicum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Henslowianum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" pulchellum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" supinum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Planorbis albus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" corneus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" nautilus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" parus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" umbilicatus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pupa edentula</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" muscorum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sphaerium sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Succinea sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Unio pictorum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" tumidus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Valvata cristata</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" macrostoma</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" piscinalis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sp.</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

17
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Brorup</th>
<th>Tueshol</th>
<th>Skovlyst</th>
<th>Hulbjerg</th>
<th>Lervad</th>
<th>Bramminge</th>
<th>Hestholm Søgel.</th>
<th>Ejstrup</th>
<th>Kolding</th>
<th>Rosstrup</th>
<th>Silkeborg</th>
<th>Tjornegaard</th>
<th>Grevinge</th>
<th>Moen</th>
<th>Fem-Zonen</th>
<th>Hulbjerg etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytheridea lacustris</td>
<td></td>
</tr>
<tr>
<td>Daphnia pulex</td>
<td></td>
</tr>
<tr>
<td>Daphniidae</td>
<td></td>
</tr>
<tr>
<td>Ostracada</td>
<td></td>
</tr>
<tr>
<td>Notaspis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchomenus moestus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allhaus subsfusus</td>
<td></td>
</tr>
<tr>
<td>Cecidomyia alni</td>
<td></td>
</tr>
<tr>
<td>Donacia affinis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" micans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oodes helopioides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Otiorrhynchus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phryganiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanoecera sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Abramis brama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Acerina cerria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aspius alburnus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cyprinidae?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Esox lucius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Leuciscus rutilus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Perca fluviatilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lagopus sp.?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Picus sp., Gn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Castor fiber, Gn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cervus dama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Homo sp., Eoliter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lagomys (hyperboreus?), Ekskr.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mus (sylvaticus?), Ekskr. og Gn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sciurus sp., Gn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Anabàena cfr. Lemmermanni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Botryococcus Brasunii</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Campylodiscus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chara sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chrysomonadinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocconeis placentula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Breup</td>
<td>Tweddal</td>
<td>Skovlyst</td>
<td>Hulbjerg</td>
<td>Lierad</td>
<td>Braamminge</td>
<td>Holland-Skod.</td>
<td>Hjelsrup</td>
<td>Kolding</td>
<td>Roseup</td>
<td>Silkeborg</td>
<td>Tjornegaard</td>
<td>Grevling</td>
<td>Møn</td>
<td>Eem-Zonen</td>
<td>Hollerup etc.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Cosmarium Meneghinii</td>
<td></td>
</tr>
<tr>
<td>Cosmarium spp.</td>
<td></td>
</tr>
<tr>
<td>Cymbella ventricosa</td>
<td></td>
</tr>
<tr>
<td>Euastrum sp.</td>
<td></td>
</tr>
<tr>
<td>Fragilaria mutabilis f.</td>
<td></td>
</tr>
<tr>
<td>Gloeotrichia sp.</td>
<td></td>
</tr>
<tr>
<td>Gomphonema intricatum</td>
<td></td>
</tr>
<tr>
<td>" parvulum var.</td>
<td></td>
</tr>
<tr>
<td>Melosira arenaria</td>
<td></td>
</tr>
<tr>
<td>" granulata</td>
<td></td>
</tr>
<tr>
<td>Meridion circulare</td>
<td></td>
</tr>
<tr>
<td>Nitella sp.</td>
<td></td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td></td>
</tr>
<tr>
<td>Pediastrum angulosum</td>
<td></td>
</tr>
<tr>
<td>" Boryanum</td>
<td></td>
</tr>
<tr>
<td>" Kawraiskyi</td>
<td></td>
</tr>
<tr>
<td>Phacotus lenticularis</td>
<td></td>
</tr>
<tr>
<td>Pinunaria sp. (divergens)</td>
<td></td>
</tr>
<tr>
<td>Staurastrum sp.</td>
<td></td>
</tr>
<tr>
<td>Synedra sp. (ulna?)</td>
<td></td>
</tr>
<tr>
<td>Tetraedron minimum</td>
<td></td>
</tr>
<tr>
<td>Armillaria mellea</td>
<td></td>
</tr>
<tr>
<td>Arthriniun naviculare</td>
<td></td>
</tr>
<tr>
<td>Cenococcum geophilum</td>
<td></td>
</tr>
<tr>
<td>Coniosporium miserrimum</td>
<td></td>
</tr>
<tr>
<td>Coniothecium sp.</td>
<td></td>
</tr>
<tr>
<td>Daldinia concentrica</td>
<td></td>
</tr>
<tr>
<td>Dipladia taxi</td>
<td></td>
</tr>
<tr>
<td>Diplodiella sp.</td>
<td></td>
</tr>
<tr>
<td>Endorhiza (vaccini?)</td>
<td></td>
</tr>
<tr>
<td>Frankia alni.</td>
<td></td>
</tr>
<tr>
<td>Gnomonia sp.</td>
<td></td>
</tr>
<tr>
<td>Hysterium strobilarium</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lophodermium Neeii</td>
<td></td>
</tr>
<tr>
<td>Microthryrium sp.</td>
<td></td>
</tr>
<tr>
<td>Monoblepharis sp.</td>
<td></td>
</tr>
<tr>
<td>Mycorrhiza sp.</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Børrup</td>
<td>Tuxsholm</td>
<td>Skjoldby</td>
<td>Hulkiger</td>
<td>Lervad</td>
<td>Brammeng</td>
<td>Hollandsbek</td>
<td>Ejstrup</td>
<td>Kolding</td>
<td>Rostrup</td>
<td>Silkeborg</td>
<td>Tvejesgaard</td>
<td>Grevinge</td>
<td>Moen</td>
<td>Ecm-Zonen</td>
<td>Hollern etc</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Hylocomium triquetrum</td>
<td></td>
</tr>
<tr>
<td>Hypnum intuscum</td>
<td></td>
</tr>
<tr>
<td>praelongum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>purum</td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>rulabulum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>salebrosum</td>
<td></td>
</tr>
<tr>
<td>sericeum</td>
<td></td>
</tr>
<tr>
<td>striatum</td>
<td></td>
</tr>
<tr>
<td>striigosum</td>
<td></td>
</tr>
<tr>
<td>Swartzii</td>
<td></td>
</tr>
<tr>
<td>velatunum</td>
<td></td>
</tr>
<tr>
<td>viride</td>
<td></td>
</tr>
<tr>
<td>Isothecium myosuroides</td>
<td></td>
</tr>
<tr>
<td>myurus</td>
<td></td>
</tr>
<tr>
<td>Leersia rhabdocarpa</td>
<td></td>
</tr>
<tr>
<td>Marchantia polymorpha</td>
<td></td>
</tr>
<tr>
<td>Meesea longiseta</td>
<td></td>
</tr>
<tr>
<td>Mollia fragilis</td>
<td></td>
</tr>
<tr>
<td>Neckera complanata</td>
<td></td>
</tr>
<tr>
<td>crispa</td>
<td></td>
</tr>
<tr>
<td>Pohlia (natans?)</td>
<td></td>
</tr>
<tr>
<td>Polytrichum attenuatum</td>
<td></td>
</tr>
<tr>
<td>communie</td>
<td></td>
</tr>
<tr>
<td>juniperinum</td>
<td></td>
</tr>
<tr>
<td>strictum</td>
<td></td>
</tr>
<tr>
<td>Porotrichum alopecurus</td>
<td></td>
</tr>
<tr>
<td>Sphagnum acutifolium</td>
<td></td>
</tr>
<tr>
<td>cymbifolium</td>
<td></td>
</tr>
<tr>
<td>papillosum</td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td></td>
</tr>
<tr>
<td>Stereodon cupressiformis</td>
<td></td>
</tr>
<tr>
<td>Swartzia montana</td>
<td></td>
</tr>
<tr>
<td>Thyidium Blandowii</td>
<td></td>
</tr>
<tr>
<td>lamariscifolium</td>
<td></td>
</tr>
<tr>
<td>Aspidium aculeatum</td>
<td></td>
</tr>
<tr>
<td>Isoetes lacustris</td>
<td></td>
</tr>
<tr>
<td>Lastraæa cristata</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Bruunrup</td>
<td>Tvedsted</td>
<td>Hjellebek</td>
<td>Hjellebø</td>
<td>Illingstad</td>
<td>Eikstraup</td>
<td>Eikstraup</td>
<td>Rostrup</td>
<td>Silkeborg</td>
<td>Tjæreborg</td>
<td>Greve</td>
<td>Moen</td>
<td>Eam-Zonien</td>
<td>Hatleup, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastrea filix mas</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" spinulosa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" thelypteris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopodium annotinum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" clavatum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophioglossum vulgatum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osmunda regalis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypodium vulgare</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteris aquilina?</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus communis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picea excelsa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxus baccata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ajuga reptans</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcostaphylos alpina</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armeria maritima</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batrachium cfr. conefr.oides</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula alba</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" nana</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" odorata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" subalpina</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" verrucosa f.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bideus tripartitus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasenia purperea</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butomus umbellatus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calla palustris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitriche autumnalis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex ampullacea</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" filiformis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" pseudocyperus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" riparia</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" cfr. stellulata</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Breup</td>
<td>Tiekhol</td>
<td>Skovlyst</td>
<td>Hovbjerg</td>
<td>Lerdal</td>
<td>Brannum</td>
<td>Hollum-Segge</td>
<td>Ejstrup</td>
<td>Rødning</td>
<td>Rostrup</td>
<td>Silkeborg</td>
<td>Thorsgaard</td>
<td>Grevinge</td>
<td>Moso</td>
<td>Først-Zonen</td>
<td>Hollstrup etc.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carum carvi</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ceratophyllum demersum</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cicuta virosa</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirsiun lanceolatum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cladium mariscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conium palustre</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corydalis cava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Crataegus monogyna</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drosera rotundifolia</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dryas octopetala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dulichium spathaceum</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbia nigrum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enodium coeruleum</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ericine</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eriophorum vaginatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eupatorium cannabinum</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gramineae</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippuris vulgaris</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hydrocharis morsus rana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilex aquifolium</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris pseudacorus</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnanthemum nymphaeoides</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycopus europaeus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Menyanthes trifoliata</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Myriophyllum alterniflorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" spicatum</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Najas marina</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nuphar luteum</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nymphaea alba</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oenanthe phellandrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxalis acetosella</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxon</td>
<td>Bremerup</td>
<td>Tuchel</td>
<td>Skodelst</td>
<td>Hallmajer</td>
<td>Lettjord</td>
<td>Brammingør</td>
<td>Holland-Søgd</td>
<td>Ejstrup</td>
<td>Kolding</td>
<td>Rosstrup</td>
<td>Silkeborg</td>
<td>Grevinge</td>
<td>Møns Park</td>
<td>Fanø-Zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Oxyccoccus palustris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phragmites communis</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygonum lapathifolium</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Populus tremula</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polanogoton acutifolius</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>condylocarpus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>densus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>filiformis</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Friesii</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>gramineus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>nana</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>obtusifolius</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>perfoliatus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>polygonifolius</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>praelongus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>pasillus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>trichoides</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>zosterifolius</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Potentilla</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Prunus padus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Quercus pedunculata</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ramunculus repens</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rhamnus frangula</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>saxatilis</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sp</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rumex marilimus</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sp</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sagittaria sagittifolia</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Salix cfr. caprea</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>cfr. phyllicifolia</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>polaris</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>reliculata</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sambucus sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Scirpus lacustris</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Braanrap</td>
<td>Tuijbol</td>
<td>Skovlyst</td>
<td>Hokker</td>
<td>Levead</td>
<td>Barminge</td>
<td>Holland-Sogel</td>
<td>Ejstrup</td>
<td>Kolding</td>
<td>Rosstrup</td>
<td>Silkeborg</td>
<td>Tindrage</td>
<td>Grevinge</td>
<td>Møen</td>
<td>Eem-Zaanen</td>
<td>Hodderup etc.</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Scirpus sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparganium ramosum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"spp."</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stachys silvatica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratiotes aloides</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilia europea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"grandifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torilis anthriscus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"sp."</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulmus sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbellifera</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccinium uliginosum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viola palustris</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscum album</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zannichellia sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fortegnelse over benyttet Litteratur,

hvor til er henvist i Afhandlingen.

D. G. U. = Danmarks geologiske Undersøgelse.
D. G. F. = Meddeleler fra Dansk geologisk Forening.
S. G. U. = Sveriges geologiska undersökning.
G. F. F. = Geologiska Föreningens i Stockholm Forhandlingar.
N. G. U. = Norges geologiske Undersøgelse.

Castracane, Fr., 1876: Die Diatomeen in der Kohlenperiode. Pringsheims Jahrbücher, Bd. X.

Conwentz, H., 1892: Untersuchungen über fossile Hölzer Schwedens. S. G. U. Ser C, nr. 120.

Erdmann, E., 1907: Eigenschaften der tertiären Braunkohlen in G. Klein (s. d.).

Forchhammer, G., 1843: Om Midlerne til at bestemme Brandmaterialiernes varmebringende Kraft. Archiv for Pharmacie, Bd. II. Kbh.

1907a: Über die Bedeutung und Herkunft der westbaltischen, untereocänen Tuff- (Asche-) Schichten. Centralblatt f. Mineralogie etc.

1907b: Über die Braunkohlenformation in der Provinz Schleswig-Holstein i G. Klein 1907 (s. d.).

1908: Eem-Zonernes Flora i Victor Madsen. V. Nordmann og N. Hartz (s. d.).

Heiberg, P. A., 1863: Kritisk Oversigt over de danske Diatoméer, Kbh.

Hennig, A., 1904: Finnes en lucka emellan senon och danien? G. F. F., Bd. XXVI.

1907: Preglaciala Dryssförandna inneslutningar i morän. G. F. F. Bd. XXIX.

Klein, G., 1907: Handbuch für den deutschen Braunkohlenbergbau. Halle a. S.

Lagerheim, G., 1902;: Bidrag till kännedomen om kärlkryptogamernas forna utbredning i Sverige och Finland. G. F. F., Bd. XXIV.

1902;: Untersuchungen über fossile Algen. I—II. G. F. F., Bd. XXIV.

1906: Über die erste (älteste) Vereisung bei Rüdersdorf und Hamburg und die Altersstellung der Paludinenschichten der Berliner Gegend. Centralblatt f. Mineralogie etc.

1903: The Tertiary Fauna at Kap Dalton in East-Greenland. Medd. om Gronland, XXIX.

Reinsch, P. F., 1905: Die Palinosophirien, ein mikroskopischer vegetabler Organismus in der Mucronatenkreide. Centralblatt f. Mineralogie etc.

Saporlu, E., 1878: Révision de la flore heersienne de Gelinden etc., Mém. cour. et Mém. d. sav. étrangers. T. XII.

Sarauw, G. F. L., 1897: Cromerskovtaget i Frihavnen og Tralevningerne i de ravforende Sandlag ved Kopenhagen. D. G. F. Nr. 4.

Schimper, W. Ph., 1890: se Schenk.

Vaupell, Chr., 1851: De nordsjællandske Skovmoser. Kbh.
 » 1853 (1906): En botanisk Undersogelse af det fossile Træ etc., D. G. F. Nr. 12.
 » 1902: Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta etc. Berlin.
Ostrup, E., 1896 og 1900: Diatoméerne i nogle islandske Surtarbrandlag. D. G. F. Nr. 3 og Nr. 6.
Summary of the Contents.
The Introduction (pp. 1—11) gives a brief review of the earlier literature concerning the phytopalaeontological discoveries in the Rhætico-liassic, Cretaceous and Tertiary deposits of Denmark.

On pp. 6—8 a list is given according to Stolley (1899) of the diatoms found in the Tertiary »Cementsten« and Diatom-earth of the Limfjord.

Tertiary deposits.
(Tertiære Allejringer.)

Cementstone.
(Cementsten.)

In the section: Tertiary deposits first the »Cementsten« and its plant remains are described (pp. 12—18); of greatest interest are leaves of Cocculites Kanei, figured on Pl. I, fig. 1 and Pl. II, fig. 1, formerly known from Greenland, Belgium, Ireland and the Hebrides, from beds which are most probably Eocene.

The following new species were found: Carpenterthes Furensis m. (Pl. II, fig. 3) is a 3 mm. long, 2 mm. broad, egg-shaped, slightly compressed carpolite, which is provided at both ends with a low, rounded tip; from tip to tip there are 8 fine, light, longitudinal stripes on the dark-brown, thin shell, which seems to have a tendency to split into two halves.

Carpolithes sphaericus, a spherical carpolite, is ca. 7 mm. in diameter, filled with calc spar; the testa is ca. 0.3 mm. thick, of a darker colour; fragments of a black, smooth shell of coal, thin as paper, cover the surface of the carpolite, on which there is also a low, faintly rounded tip; the resemblance with the fruits of recent Lindera and Cinnamomum is exceedingly great.

In connection with the plant remains in the Danish »Cementsten« two carpolites are described, which were found in a septarium-like knoll at Brothen (Holstein) by Stolley (1899, p. 106 et seq.); this knoll further contained various animals (Valvatina rhaphistoma, Stolley), elytra of beetles (Erihelinus sp.?, Pl. II, fig. 4), Carp. sphaericus and Carp. rhabdospermus (Lesq.) m. (Pl. II, fig. 5) the last earlier known from the Tertiary lignite (Eocene or Miocene) at Brandon (Vermont, U. S. A.).

The »Cementsten« is regarded as Eocene.

18*
Brown coal.

(Brunkål.)

The brown coal occurring in Jutland is described pp. 21—90. On pp. 23—33 numerous new places are mentioned where lignite was found in Jutland and the mode of its deposition stated. The conditions of deposit and distribution of the lignite at Sandfeldgaard have been very thoroughly investigated (pp. 29—44).

On pp. 49—50 a description is given of the fine Tertiary section at Sällten, depicted on figs. 8 and 9.

The section contains the following:

- ca. 1.8 m. moraine gravel.
- 17 cm. stratified, stoneless, fluvioglacial sand,
- 12 cm. black mica-clay with a few light sand layers,
- 0.5 cm. lignite,
- 4 cm. coarse quartz sand.

On pp. 51—55 a summary is given of the higher plants found in the lignite and the lignite gyjtjes, partly leaves, partly carpolites and partly pollen (the last determined by Prof. G. Lagerheim, Stockholm). On pp. 55—60 a few of these species are described in more detail.

The following new species are mentioned: Carpolithes Dalgasi is a rounded, curved carpolite, beset with numerous small tubercles on the convex side and provided at the one end with a hole (Pl. III, fig. 10).

Carp. Johnstrupii: under this name I bring together a group of small black, carbonized, bivalved spherical or elongated-pointed carpolites with thick testa, all of which have in common, that their inner cavity is pear-shaped, lighter-coloured and prolonged upwards into a quite thin canal, which seems to reach right through the testa of the carpolite; they are very common in the lignites (Pl. III, figs. 11—13).

Carp. Nilssonides (Pl. III, figs. 11—16): a flat, broadly or oblong egg-shaped or oblong lanceolate carpolite, with (3 or 6) flat, usually indistinct, curved ribs on each side; it varies in size and in the relation between length and breadth (13.5 × 7) mm. — 22 × 12 mm.).

Carp. A (Pl. III, figs. 17—18): a flat, slightly irregularly oblong carpolite with 3 or 4 indistinct longitudinal ribs; 6. mm. long, 4 mm. broad, 1 mm. thick.

Carp. B (Pl. III, figs. 19 (and 20)): a flat, thin-tested, pointedly egg-shaped carpolite represented on fig. 20 may also perhaps be referred to this species.

Hydrocharis tertiaria: shining, coal-black seed, 2 mm. long and ca. 1.2 mm. broad, egg-shaped, with a hole (germination hole) at the pointed end. A microscopic examination of the testa showed such an obvious agreement with the seed of Hydrocharis morus s. nani, that there can scarcely be any doubt that they must be referred to this genus.

On pp. 60—69 the diatoms found by E. Østrup in the lignite, lignite gyjtjes and mica-clay are described; they are all common modern forms and — curiously enough — all freshwater forms. On pp. 64—67 a summary is given of the species.
The mode of formation and age of the brown coal.
(Brunkullenes Dannelsesmaade og Alder.)

Whilst the Jutland lignites have previously been regarded as allochtonous formations, the author regards them as autochtonous and deposited in freshwater basins. Tree-stems are far from being of such importance here as the old drift-wood theory demands, and the stems and branches dug out of the coal do not give the impression of being drift-wood; in spite of much search not the least trace of marine fossils was found anywhere in the mica-clay or sand, which lie above and under the coal, and such have never been described from our lignite or the clay lying immediately above or below.

At all the localities where the author was able to investigate the under-layer of the coal, a distinct freshwater gyttje was found underneath and in such close connection with it, that there can be no doubt that the gyttje and the coal are connected formations and a continuous deposit from a freshwater basin, analogous to the common arrangement in peat-layers over gyttje in our postglacial wood-bogs.

J. P. J. Ravn refers the Jutland lignite to the Lower Miocene; the few plant-remains determined from the lignite are not against this determination of the age.

On pp. 76-90 analyses and determinations of the heating value of the lignites are given as also some remarks on their use. Of special interest is the series of analyses made by Cand. polyt. Alf Stæge on the different layers of coal from Sandfieldgaard (p. 81).

That the Jutland lignite has hitherto not been much used in practice probably depends mostly on the fact, that the coal layers are considered to be too thin and to contain too much sulphur. The coal layers hitherto known are probably indeed too thin to pay exploitation, but the author maintains that the thickness of a good number of the coal layers has not hitherto been known, as in most cases no borings have been made through the coal layers which have been met with by chance on digging.

Pleistocene deposits.
(Diluviale Allejringer.)

Various deposits of undetermined age with older character are first described, the first of these being the

Amber-pin-beds.
(Rav-Pindelag.)

By amber-pin-beds the author indicates the dark-coloured beds in the fluvio-glacial sands, which contain a mixture of Tertiary and quaternary seeds and fruits of plants, characterized by

Carpolithes Johnstrupii,
— *Rosenkjerrii,*
Stratiotes Kaltenmordhemensis and other Tertiary species, as also
Brassica purpurea,
Stratiotes aloides,
Carpinus betulus and other quaternary species;

further, stumps of wood as well as (as a rule) brown coal, lignite, Jurassic coal, amber etc.

All the mentioned constituents in the beds are very much rolled. Sometimes the beds appear as thin, black streaks, consisting exclusively of fine coal dust, sometimes as meter-thick, firmly packed layers of larger pieces of coal and wood. The layers have obviously been washed together from materials of widely different origin; it is their common small weight which has led to their being collected together in special small layers. Naturally, the obvious, dark-coloured layers in the white fluvioglacial sands must have been observed earlier, but they were only cursorily and occasionally mentioned in the literature, until Johnstrup at the Naturalists' Meeting in Copenhagen 1892 called attention to the fact that in addition to the amber and coal the layers also contained seeds and fruits.

On pp. 92—112 are mentioned the different localities from which the amber-pin-beds are known, partly in Denmark, partly outside Denmark in Germany and Sweden.

Flora of the amber-pin-beds.
(Rav-Pindelagenes Flora.)

On pp. 112—118 a short summary is given of the earlier investigations (up to 1906) on the flora of the amber-pin-layers.

The Seeland amber-pin-layers contain some coal fragments concerning which all authors are agreed, that they are Bhaetic or Jurassic, but a more exact botanical examination of these has never been made.

The Tertiary wood from these layers was first investigated by Vaupell (1853), later by Sarauw (1897).

The determinations of the Tertiary wood by Vaupell are given on p. 112, those by Sarauw on p. 113 above.

Johnstrup's collections of seeds and fruits from the amber-pin-layers at Copenhagen (Valby Bakke and Ordrup) were determined by O. Rostrup, who likewise determined Rosenkær's collections from the Free Harbour of Copenhagen. In 1897 Gunnar Andersson proved on a visit to the Mineralogical Museum, that the seeds of Brassica purpurea were present in the collections from Ordrup and Valby Bakke. In various publications (A. Jessen, 1899 and H. N. Rosenkær, 1906) the author and in 1906 Gunnar Andersson have given contributions regarding the flora of these layers.

The list pp. 119—121 gives the species which the author has found on going through a very large material, mainly collected by H. N. Rosenkær.

The first 13 species in the list are considered to be Tertiary species, which are all more or less carbonized; some of them are new species, some are known from the Jutland lignite or from the Tertiary layers of North Germany. The great majority are common Pleistocene species.

Carpolithes Hafniens is m. (Pl. V. figs. 6a—e): a carpolute of irregular dice-shaped form, 6—7 mm. in diameter. The one surface (base?) shows a distinct concavity or groove (fig. 6c), the opposite surface (fig. 6b) is arched, lighter than the other surfaces of the carpolute and shows two faint indications of shallow pits. Each of the four remaining surfaces has a kettle-shaped con-
cavity, which is (or has been) filled by a disc-shaped body, convex inwards, flat and even outwards, on the inner side of which again 3—4 small pits can be seen.

When the carpolite is cut through, the basal (?) groove is seen to widen out in the interior of the carpolite into a larger cavity (ca. 3 mm.); the 4 disc-shaped bodies lie in flat depressions, which have a dark, hard boundary surface towards the soft interior of the carpolite, which is formed of a loose parenchymatous tissue.

This carpolite, the form of which is somewhat variable and is very difficult to describe, is quite a puzzle to me. I know 4 examples in all of this remarkable carpolite, one from Ordrup (the one figured), two from Valby Bakke and one from Lönstrup Klint.

Carpolithes le Mairii m. (Pl. IV, fig. 16): a shiny black, egg-shaped carpolite; pointed at the upper end, cut square at the lower end which is also provided with a hole. Its surface is pitted; at the base the pits are oblong, at the uppermost part almost circular.

Carpolithes Ordrupensis m. (Pl. IV, fig. 10): a black, carbonized, thick-walled, compressed, broadly egg-shaped carpolite (fruit stone?, somewhat resembling *Prumias), 5 mm. long, greatest breadth 4 mm.; the outer surface warted, wrinkled, shiny. Only one example known, from Ordrup.

Carpolithes Rosenkjærii m. (Pl. IV, figs. 11—15): a black, carbonized, globular-carpolite with three cavities, the one cavity with a valvular opening; this valve is loose above but remains attached at the base of the carpolite. There is a slight depression at both poles.

The size is 1.6—3 mm. in diameter; the walls are thick, the outer and the septa almost equally thick; in transverse section (fig. 13) a small cavity is noticeable at the spot where the three septa meet in the central axis of the carpolite.

Whilst most specimens of this remarkable carpolite (I have seen over 100) have three cavities and one valve, I have found a few with four cavities and two valves (figs. 14 and 15). The valve is broken off in a quantity of the material, always with an uneven broken surface below, which shows that it is not normal for the valve to fall quite off. On most specimens the valve is firmly attached and gaps but little.

The systematic position of this carpolite is for the time being quite a mystery; I know nothing corresponding to it at the present day, nor have I found it described or figured in the literature accessible to me.

Carpolithes Steenstrupii m. (Pl. IV, figs. 22—23): a black, carbonized, thick-walled carpolite, compressed, egg-shaped (sometimes broad, sometimes oblong), with two characteristic»ears» at the broad end.

The carpolite is easily divided into two halves; on opening one example the remains of the seed-test (?) were found inside in the pyriform cavity.

Carpolithes Ostrupii m. (Pl. IV, figs. 25—26): a black, fusiform carpolite with holes at both ends and with low ribs running from pole to pole.

The short break in fig. 25 is most probably due to some damage.

Elaeocarpus globulus P. Mexn. (Pl. V, figs. 1—5): black, carbonized carpolites in form like a wedge cut from a sphere, with broad, smooth or slightly
uneven back-surface and two plane or slightly concave sides meeting together in the «ventral» line.

There is no cavity internally in these carpolites; the carpolite has throughout a characteristic, vesiculated structure. The size varies from 3.5—8.0 mm. in length and corresponding breadth.

Whilst such carpolites in form like sections from a sphere are very common in the amber-pin-beds, it is a great rarity to meet with several of them connected together; Rosenkrae's reports of discoveries, which record these carpolites under the name of «carbonized kernels», mention however at several places that they originally held together but later separated on preparation. In the material gone through by me one case was found of 3 wedge-shaped pieces united to form a half sphere, which showed a faint depression at one end surrounded by a low, ring-shaped elevation; in the material from Valby Bakke lastly the spherical shaped carpolite represented in fig. 2 and formed of 6 connected pieces was found; a section shows 6 small chambers containing remains of the seed-test; in the material from Izhoe a similar whole carpolite with 6 chambers was also found.

I found the same carpolite (fig. 1) on a visit in 1898 to the Victoria pit at Senftenberg (Niederlausitz).

This carpolite, to which in 1906 I gave the name C. Valbyensis (in Rosenkrae: «Fra det underjordiske Kjøbenhavn», was in the same year (1906) called Elhocarpus globulus by Menzel; according to the latter the fruits are common along with the leaves, which show a complete agreement with leaves of the E. alaternoides Brongn. et Gris of the present day. The fruit is thus described: Fructibus drupaceis, globulosis; pericarpio verisinuiliiter coriaceo, paulatim duro, sphærico, quinque-loculari, longitudinaliter punctato. The two specimens I have found in the amber-pin-beds are however six-chambered, not five-chambered. Even before I became aware of Menzel's paper I had remarked upon the resemblance between this fruit and the E. sphæricus Gartn. (recent) figured by Heer (1869), which is however much larger, and E. Albrecht Heer.

Elhocarpus is a genus belonging to the Tiliaceae and lives at the present time in tropical Asia, Australia, the Pacific islands, New Caledonia and Japan.

Stratiotes aloides (Pl. IV. figs. 3—4). As the seed of this species occurring in the amber-pin-beds has a more tuberculated surface than the typical interglacial and now-living seed and thus forms a transition to the Tertiary S. Kaltennordhemensis, I have called it S. aloides f. intermedia (I have found the same form in the preglacial beds at Eime in Hanover mentioned by H. Menzel (1906, p. 623)).

Age of the amber-pin-beds.
(Rav-Pindelagenes Alder.)

Like several other authors who have taken up this question, the present author is inclined to consider the flora of the amber-pin-beds as predominantly preglacial.

On the other hand, the amber-pin-beds are themselves of pleistocene age, formed at the same time as the deposits of the sand in which the plant-remains are now found on a secondary bed.
Fossiliferous gytje- and clay-deposits.
(Fossilforende Gytje- og Leraflejringer.)

On pp. 131—137 an account is given of various fossil-containing gytje- and clay-deposits, which either by their fauna or by their situation reveal that the period of their formation lay far back in the Quaternary Period, though the actual point of time cannot at present be given more exactly. On pp. 133—134 lists are given of the plants found in gytje masses in the lower moraine in Copenhagen Free Harbour; the animal remains mentioned on p. 134 from the same mass are for the most part cited after A. C. Johansen (1904).

On p. 135 are noted the plant remains from the Corbicula bed at Forslevgaard, on p. 137 the plant remains from clay boulders in the lower moraine in the Free Harbour and Vally Bakke, the last being of an arctic character.

Interglacial deposits.
(Interglaciale Allejringer.)

It appears from my investigations that Jutland contains a number of plant-containing interglacial layers. In 1899 I described a number of occurrences of interglacial diatom-earth (at Hollerup, Fredericia, Træle and Vejle); in a preliminary note (1904 & 1905) I stated, that in several bogs in the neighbourhood of Brorup in southernmost Jutland near the German boundary, I had found fruits of a North American Cyperacea, Dulichium spathaceum Pers., which no longer grows in Europe and had not been known there before my investigations, and again, in these preliminary reports I noted the discovery of Brasenia purpurea, Picea excelsa, Carpinus betulus and other interglacial characteristic fossils in these bogs.

In 1907 the proprietor Fritz Momsen, Skovlyst near Brorup, found on digging a well at Brorup Station that a layer of peat was laid bare at a depth of ca. 5 m. below the surface of the earth, and in the following year I investigated this and numerous other interglacial bogs, chiefly in the neighbourhood of Brorup. These bogs have always been noticeable in the country, as a flat, bowl-shaped depression occurs in the soil over the interglacial bog-basin, the peat in the course of time becoming strongly compressed under the weight of the over-lying diluvial layers.

Bog in village at Brorup station.
(Mose i Brorup Stationsby.)

The section was:

- 0.6 m. waste-filling,
- 5.0 - sand with a few stones,
- 0.3 - humous, clayey sand, "transition layer",
- 2.0 - peat,
- 0.3 - gytje,
- 0.3 - + freshwater sand.
On pp. 142-153 the animal and plant remains found in the various layers of the interglacial bog are noted, and in the Table pp. 153-155 a list is given of all the animals and plants found in the bog; I-VIII refer to the uppermost layers, the Sphagnum peat, IX to the Meesea peat, X the gyttje and XI the freshwater sand.

General remarks on the bog in village at Brørup station.
(Almindelige Bemærkninger om Mosen i Brørup Stationsby.)

The section described through this small, deep bog, which — to judge from the depression in the ground above it — has scarcely been more than a hundred meters in circumference, shows that it has passed through the same development — from lake to dry heath-bog — as our common, North Seeland, postglacial wood-bogs. The bog began as a small open lake — or rather water-hollow —, in to which the sand was first carried; then an extensive layer of gyttje was deposited on the bottom as the organic life in the water and at its borders became richer, and finally the water-hollow became entirely overgrown, first with floating bog formed by Meesea longiseta, which is a well-marked, moist »floating bog-moss«, later with Sphagna. The upper peat layers in the section show us the bog as a dry heath-bog, overgrown with Calluna, Empetrum, Enodium, Picea etc.; it is quite evident and is seen from the description above, that these species have grown on the surface of the bog and have not been washed or blown out over this. That the development has proceeded in this manner, from lake to heath-bog, also appears from the fact, that the freshwater sand (XI), the gyttje (X) and the Meesea layer (IX) contain water plants, water animals and swamp plants, which do not occur again higher up in the Sphagnum peat.

The last part in the developmental history of the bog obtained its character from the advancing (Baltic) inland ice and the glacier-rivers streaming in front of this, which carried away a part of the uppermost layers of the bog; otherwise these would certainly have remnants of the purely arctic vegetation, which must be considered to have grown on the bog before this became covered by the ice-sheet and its deposits. The »transition layer«, the brown, humous sand, between the peat and what lies above, the white or whitish-yellow, glacial sand, must be considered to have been formed by the glacier-water from the advancing ice by the fusion of sand, clay and peat.

That the ice must be considered to have advanced over the bog and the whole group of ridges will be explained more fully in a later section; so much is in any case certain, that the bog is covered by a fluvi-glacial sand of ca. 6 m. in thickness, and that this — as we know from numerous gravel-pits, borings and excavations in this neighbourhood — rests upon extensive glacial deposits.

The species which in floristic regards characterize the bog are the spruce and Carpinus betulus; neither of these two forest trees have hitherto been known from Danish postglacial beds, and just as little from the postglacial beds of North-West Germany¹ or England; on the other hand, both are characteristic of the interglacial beds of the same regions.

¹ Apart from the quite isolated discovery of a single pollen grain of Picea in Litorina gyttje at Kiel C. Weber, 1904, p. 5, a discovery which, as Weber also remarks, does not prove that the spruce has lived in this region in postglacial time.
It is however not merely the occurrence of these species and the occurrence of *Ilex, Tilia grandifolia, Viscum* and *Taxus*, also not known from our postglacial bogs, which prove in fact that the bog is interglacial; the situation of the bog above and below glacial deposits is a further proof of its interglacial age, and lastly the distribution of the species in the different layers of the bog points in the same direction, or more correctly, it is only by accepting an interglacial age for the bog that we obtain a natural and unforced explanation of the appearance of the species in the different layers of the bog.

An ideal section in an interglacial bog (or other interglacial, plant-containing deposit) would in fact have the following appearance:

Uppermost: glacial beds (moraine or fluvio-glacial deposits).

- layers with arctic plant remains.
- » » subarctic plant remains.
- » » temperate » » , temperature maximum!
- » » subarctic » »
- » » arctic » »

Lowermost: glacial beds (moraine or fluvio-glacial deposits).

Of the plant-containing layers the uppermost and the lowermost with the purely arctic flora are wanting, whilst the section otherwise — as can be seen from the tables — satisfies very well the requirements of the ideal section:

- glacial bed, 6 meters.
- layer with arctic flora wanting, probably eroded away!
- Sphagnum peat, with a subarctic flora: *Betula subalpina* and *nana* and a few »warmer« species.
- Sphagnum peat with several »warm* species: *Ilex, Taxus, Tilia grandifolia*, freshwater layer with subarctic birches and *Populus tremula*; the »warm« species, as also *Picea*, have not yet arrived.
- layer with arctic flora not reached, probably lying deeper.
- glacial bed, not reached.

To illustrate these features more clearly, I have drawn up a list of the species of trees and bushes found in the bog (see Table p. 159 and 284), and arranged them in the order in which they first appear in (have come to) the bog. It appears clearly from this Table that the species occurring last in the series of layers also disappear earliest, in other words, are only found in the intermediate parts of the bog which correspond to the temperature maximum of the interglacial period.

The order in the Table agrees on the whole with the geographical distribution of these plant species at the present time, in this way that those named first in the Table go furthest to the north and have the most moderate requirements as to temperature, whilst the species mentioned last in the Table cease to appear at a greater distance from the Polar Circle and make greater demands on the temperature than the first. *Tilia grandifolia, Ilex* and *Taxus*, probably the most thermophile of these species, are only found in the intermediate parts of the bog.
<table>
<thead>
<tr>
<th>Betula nana and hybrids</th>
<th>Sphagnum peat</th>
</tr>
</thead>
<tbody>
<tr>
<td>- subalpina</td>
<td></td>
</tr>
<tr>
<td>- verrucosa T</td>
<td></td>
</tr>
<tr>
<td>Populus tremula</td>
<td></td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td></td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td></td>
</tr>
<tr>
<td>Salix efr. caprea</td>
<td></td>
</tr>
<tr>
<td>Viscum album</td>
<td></td>
</tr>
<tr>
<td>Ulmus moniana</td>
<td></td>
</tr>
<tr>
<td>Picea excelsa</td>
<td></td>
</tr>
<tr>
<td>Prunus padus</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana</td>
<td></td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td></td>
</tr>
<tr>
<td>Quercus pedunculata</td>
<td></td>
</tr>
<tr>
<td>Acer sp.</td>
<td></td>
</tr>
<tr>
<td>Taxus baccata</td>
<td></td>
</tr>
<tr>
<td>Tilia grandifolia</td>
<td></td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td></td>
</tr>
<tr>
<td>Ilex aquifolium</td>
<td></td>
</tr>
</tbody>
</table>

The temperature maximum appears within layers VII—V (1.70—1.00 m. under the surface of the bog); as mentioned we find here all the most thermophile species.

The uppermost 35 cm. of the peat, layers I-II, has mouldered away so much, that it is only the most resisting plant remains which has been preserved. The peat in these layers must therefore be considered to have contained, before mouldering, considerably greater quantities of plant remains than I found in them, and the uppermost of all, the most recent layer of the peat must, as above mentioned, be considered to have quite disappeared, or so worked in among the over-lying sand and clay (transitional layers), that the plant remains are quite unrecognizable.

The numerous remains of subarctic birches in the upper layers of the bog and the almost complete disappearance of the thermophile species in the same layers point distinctly to a fall in the temperature; the white fragments of birch bark (outer bark) from layers I and II, which I have referred to LINNE'S old collective species Betula alba, belong in all probability to B. subalpina.

All the spruce needles in layer II are very small; the spruce has obviously not been so well-developed in this layer as in the intermediate parts of the bog, where the needles are twice as long or even longer.

Carpinus is the only one of the thermophile species which is found in
the second uppermost layer of the Sphagnum peat (II); as mentioned on p. 112 it was a single carbonized nut which was found in this layer; it does not seem unreasonable to conclude that it has been preserved just because it was carbonized — just as it seems to me, that the discovery of Carpinus in this layer indicates that considerable layers of the uppermost parts of the bog have been eroded away.

Above has been noted the considerable floristic difference between the interglacial Brorup bog and our postglacial bogs; the order in which the common species have wandered in or settled down in the bogs seems however on the whole the same: first the aspen and birch, then firs and later oak — even if it is not possible in the Brorup bog to distinguish the separate zones of forest trees so sharply as in many postglacial bogs.

Naturally a single section in a single bog can only give indications but no certain proofs; for these we require much more extensive investigations. But the result of the investigation of this bog section is however quite striking and agrees so remarkably well with the results of my studies on other interglacial deposits — especially with the Ejstrup section (see below) — and also agrees so exactly with the corresponding investigations of Weber and others in North Germany, that this correspondence cannot depend upon mere chance occurrences. On the contrary, it is a link in what I would call the biological or palæontological evidence for the interglacial age of the bog.

Bog on Tuesbøl Common.
(Mose paa Tuesbol Mark.)

During the years 1898—1907 I undertook a number of excavations, described on pp. 160—174, in a bog on Tuesbøl Common, ca. 2 Km. north-west of Brorup Station (the place is marked on the map fig. 11 with a cross and 3); in the tables pp. 174—177 a list is given of the animals and plants found in this bog. Of special interest is the discovery of Dulichium spathaceum Pers., partly in the Sphagnum peat (in borings I and II), partly in gyte (borings IV and V) — as also the seed of Brasenia purpurea Mich.

The bog is covered by 1—2 m. of sand with stones.

Similar bogs were found at Skovlyst near Brorup, at Hulkjær water-mill, at Lervad and Bramminge as also at several places in the neighbourhood of Brorup; they were covered by 1—1 m. of sand and contained a similar flora to that described in detail found in the bogs at Brorup Station town and on Tuesbøl Common.

Bog at Hollund Søgaard.
(Mose ved Hollund Sogaard.)

In 1903 excavations were made in an interglacial bog ca. 16 Km. north of Brorup (cf. figs. 21 and 22, pp. 195 and 197):

- 0.3 — 0.75 m. sand with few and small, sand-rubbed stones.
- 1.30 — 1.75 m. stratified, stone-free sand.
- 0.20 — 1.50 m. transition layer (brown sand).
- 1.50 m. compact Sphagnum peat.

Coarse sand.
The peat contains *Dulichium* and *Picea* (the species found are given on p. 200); in the transition layer and in the peat itself were found — in addition to a neolithic stone-axe — a number of coliths, partly percuteurs, partly racloirs, but none of them specially characteristic. On pp. 202—203 is given the determination of these fragments by A. Rutot in 1904.

Interglacial deposit at Ejstrup.

(Interglacial Gytjefejring ved Ejstrup.)

Ejstrup lies ca. 7 Km west of Kolding; the locality lies on a terrace in the valley of the Kolding River. Fig. 25, p. 207 shows one of the sections (Profile A), figs. 26—29 the other (Profile B). In Profile A were the following layers:

3—4 m. stratified terrace sand.
0.15—2.8 - (above) stone-free clay,
0—7 - brown gytje, with humous sand layer,
1—2 - (below) stone-free clay, stratified,
0—x - gravel or sand.

Moraine clay, only observed in the western end of the section.

The borings and excavations showed that the stone-free, stratified clay underneath the gytje contained polar plants (*Dryas octopetala, Salix polaris* etc.), whilst the gytje contained the usual interglacial flora, with *Picea* and *Carpinus* predominant. A complete list of all the animals and plants found in the different layers is given on pp. 227—231. Of special interest is the discovery of *Cervus dama* in the humous sand in the gytje, already mentioned by H. Winge (1904).

The whole deposit of clay, gytje and clay is plainly a continuous freshwater deposit, laid down during an interglacial period.

The Funen Group of Islands.

Plant remains have been found in various freshwater layers of the Eem deposits; these have been described by me in Victor Madsen, V. Nordmann & N. Hartz: »Eem-Zonerne« (1908, p. 105 et seq.).

Sealand.

In 1895 a peat deposit under moraine clay, probably a detached mass of peat, was found in a brickwork pit at Tjornegaard, at Gjentofte near Copenhagen; Dr. Gunnar Andersson made an investigation of this peat in 1895, and the results are shown on pp. 241—245.

At Grevinge in Odsherred »a quite thin, peat-like layer in ca. 8 m. depth, under various layers of clay, marl and sand« was found containing a number of arctic plant remains (p. 245—246).
Moen.

Plants have likewise been found in gytje in Graarygfeld on Moen's Klint, amongst which pollen of *Picea excelsa*, which in connexion with the stratigraphical place of the deposit indicates that the gytje is interglacial (p. 246).

Remarks on the interglacial Flora and Fauna.

(Bemærkninger om den interglaciale Flora og Fauna.)

If we consider the flora lists given in the foregoing and on pp. 257—265, we see, that some of the localities mentioned under the common designation "interglacial deposits" only contain arctic or subarctic plants, all of which occur in our lateglacial and postglacial deposits. The reasons why I nevertheless consider these deposits, which are all loose, free masses, as interglacial are, partly, that I do not strictly follow the definition of interglacial deposits given by Weber (1896, p. 484), partly, that the occurrence of these beds in the most recent diluvium at the place make it most reasonable to suppose, that they are the remains of interglacial beds which have undergone destruction. We have indeed seen, that several of the above-mentioned deposits (e. g. Ejstrup, and Brørup) contain arctic or subarctic plants in their lowermost and uppermost layers, whilst the intermediate layers have a temperate flora. I am therefore disposed to consider the loose masses as fragments of the upper and lower layers of interglacial formations — a conclusion which seems to be further strengthened by the fact of their places of discovery in the neighbourhood of intact deposits —, even if I must admit that they might as well originate from a smaller oscillation of the ice-edge.

If we turn now to the main mass of the above-mentioned interglacial deposits, we see, that as already frequently remarked they are characterized by the occurrence of a number of plants: *Picea, Carpinus, Brasenia, Dulichium* etc. which are not known from our postglacial bogs. The plants mentioned belong in fact to those which are characteristic for the other interglacial deposits in Middle Europe. On the other hand, the flora in the preglacial, plant-containing clay at Tegelen (CL. & EL. REID 1907 and 1908) has a considerably older stamp.

Some remarks on the above-noted species may naturally find a place here. *Picea* and *Carpinus* play a predominant role in these deposits. As often remarked they are not known from postglacial bogs in Denmark whereas both are found in the Litorina gytje of Kiel Bay (Weber, 1904, pp. 5, 24, 26 and 47). Only inconsiderable remains however are known from these postglacial layers, namely a twig with bark of *Carpinus* and a single pollen grain of *Picea*, a find which as Weber also remarks says in fact nothing as to how far the spruce has lived at Kiel at that period1).

1) In a paper by H. O. Holst which has appeared during the printing of this book, entitled: Postglaciaal tidsbestämmningar (S. G. U., Ser. C, Nr. 216, 1909, p. 18) there is mentioned the discovery of a few pollen grains of *Picea* from Kallsjö bog and a bog at Ronnelby — both in Scania — and it is also stated that O. Gertz has found the nuts of *Carpinus* in Sote bog on the sheet Trelleborg, at a depth of 1,25—1,50 m. in a yellowish gytje under the peat.

From these and Weber's discoveries at Kiel Holst draws the conclusion,
Stratiotes aloides and Hydrocharis morsus-ranae, both of which are common in Denmark at the present day, are not found either as fossil in our postglacial bogs. Whilst at the present day they seem to develop ripe fruits extremely seldom, numerous seeds of them are found in our interglacial bogs; some of them are figured on Pl. IX. On pp. 126—127 is mentioned the difference between the smooth and slender Stratiotes seed from the interglacial deposits and the more sculptured seed found in the amber-pin-beds.

Of special interest is the occurrence of the two genera Brasenia and Dulichium which no longer grow in Europe.

Brasenia, which at the present day lives in North America, East Asia, Africa and Australia, and which frequently occurs in the tertiary and interglacial layers of Europe was found by me in the bog on TUESBøL Common; in 1907 I found it together with Picea, Carpinus, Dulichium and the usual interglacial plant association in the interglacial peat on Sylt.

Dulichium spathaceum Pers., the only species of the genus Dulichium (Cyperaceæ) living at the present time, is widely distributed over the whole of eastern North America, from Canada, New Foundland and Nova Scotia in the north to the tropical Florida in the south; towards the west it reaches to Minnesota and Texas. It is a swamp and water plant, which grows socially on the banks of rivers and lakes, in damp bogs or right out in the water. The species was not known as fossil before I found it in 1898 in the bogs at TUESBøL, Lervad and Hollund Søgård, but it has later been found (according to written communication) by BEYLE in the interglacial bog at Lauenburg (Kuhgrund), and in 1907 I found it in the interglacial peat at Westerland on Sylt. A related species, D. vesiforme, has in 1908 been described by CL. & EL. REd from the preglacial clay at Tegelen. The species has died out in Europe in the interglacial period and is indeed like Brasenia an old tertiary circum-polar species.

In addition to the interglacial characteristic fossils mentioned practically all our present-day forest trees and numerous bushes and vegetables occur in the deposits dealt with here; of these however I shall here only mention the hazel (Corylus avellana). The very distinctive fruits of this species have been collected in sufficiently large number to permit of conclusions being drawn with regard to their power of variation in the interglacial period. In his Monograph: Hasselen i Sverige (1902), Gunnar ANdERSSON distinguishes between three forms of hazel nuts: f. silvestris, f. ovata and f. oblonga, the first of which is by far the most common and the last the rarest both at the present time and in the postglacial bogs in Sweden. On pl. XIII 1 have figured 25 nuts (drawn by means of the prism) from our interglacial bogs, and as will be seen all the three types mentioned are represented amongst them. In the Danish interglacial layers, even in one and the same locality (Ejstrup, Brörup), all the forms are found and under the same conditions as at the present day: f. silvestris the most common, f. oblonga the rarest. It will likewise be noticed, that within each single main form variations with pointed tip and others with pointed, more or less pyramidal base were also found in the interglacial bogs.

that Picea and Carpinus have wandered from the south to Southern Sweden, and that these species shortly after their postglacial appearance round the south-western part of the Baltic have again been driven out.

Until further information is to hand regarding the conditions of discovery, it will be difficult to estimate the significance of these finds.
Of the animal remains found in the interglacial deposits, I may here just mention those of the higher vertebrates.

There are remarkably few remains of mammals and birds preserved in our interglacial deposits. The only certain bones are those of the fallow deer from Hollerup and Ejstrup.

As mentioned above (pp. 143 and 167) the excrement of a horned deer found in various bogs may perhaps come from fallow deer.

The remaining traces of mammals are partly excrement, partly gnawed parts of plants; in this way we obtain information on the occurrence of beaver, squirrel, mouse (wood mouse?) and rat-hare.

Of the beaver (Castor fiber) I know two traces in our interglacial layers; in the humous sand at Ejstrup was found a small piece of wood, much compressed (4 cm. long, 9 by 3 mm. broad), which is obliquely cut across at the one end; the section shows distinct traces of gnawing teeth corresponding in size to those of the beaver.

The squirrel (Sciurus vulgaris) has left its marks on a number of gnawed fir cones in the humous sand at Ejstrup, and Prof. Stolley has given me a fir cone from the interglacial bog on Sylt which has been gnawed by squirrels.

Mouse (Wood mouse?). In various deposits described in the foregoing, excrements have been found of a small rodent along with mouse-gnawed hazel nuts (cf. Pl. XIII); both the excrement and the marks may possibly come from the wood mouse (Mus sylvaticus).

Rat-hare (Lagomys sp.). In the loose masses of tundra surfaces in the upper moraine at Kolding (p. 235 and 236) numerous small, spherical or lentil-shaped excrements were found, which in the opinion of Vice-inspector H. Winge might come from a rat-hare.

The comparisons I have made later with the excrement of Lagomys species speak greatly in favour of the correctness of Winge’s opinion. From Stockholm I have obtained on loan through Prof. W. Leche a spirit prepared example of Lagomys alpinus from Altai; cutting up the rectum I removed 3 pieces of excrement; they were spherical and a little larger than the fossils.

Through Prof. G. Tansfleew in Odessa I obtained a larger collection of the excrement of Lagomys pusillus, which in size, form and structure agree remarkably well with the fossils.

This characteristic excrement, which has obviously been spherical originally, has become lentil-shaped as a rule under pressure; its dimensions are now 3—4 mm. by 1—2 mm. It is composed of finely masticated pieces of plants.

Pallas (1778), who described this species, mentions its small, rounded excrement, which exactly resembles hare excrement in miniature. The species is known from the pleistocene deposits of Middle Europe (steppe fauna), but has not previously been found in Denmark.

Nehring (1890, pp. 84—85 etc.) maintains, however, in conjunction with Pallas, Andr. Wagner, Eversmann and others, that Lagomys pusillus is distinctly a steppe animal; but as the above-mentioned excrement is found in company with Betula nana, Arctostaphylos alpina and other arctic plants, it comes rather from one of the Lagomys species which lives in the tundra. It seems most reasonable therefore to take into consideration the small, northern rat-hare occurring in the northern and eastern Siberia (Lagomys hyperboreus Pallas), which is of almost the same size as Lagomys pusillus,
and the bones of which, often not distinguishable from those of *L. pusillus*,
are also found in the Pleistocene of Middle Europe.

Of birds only a species of woodpecker (*Picus* sp.) has left some traces
in the form of open and torn up fir cones, which were found in the bog at
Bramminge.

Of the mammals mentioned here there is in reality only one which is
of importance in forming an opinion as to the temperature conditions under
which the deposits in question were formed, namely the fallow deer. Both
the squirrel and the beaver namely have (or have had) a specially wide dis-
tribution from the Mediterranean countries up towards the northern bound-
dary of the forest vegetation, and so long as we do not know with certainty
the species of rat-hare whose excrements have been found at Kolding, we
cannot say more than that, as the plants already have shown us, this layer
has been formed under arctic or subarctic conditions. The fallow deer which
now lives wild in the Mediterranean countries points distinctly however to
the beds, in which its bones were found, being formed under climatic condi-
tions which were warmer than the present in Denmark. The plants,
which at the present day have their northern boundaries with us, namely
Carpinus betulus and *Tilia grandifolia*, also point in the same direction.

If we now compare this with what has been said earlier (pp. 156–160)
regarding the developmental history of the Brørup bog and the distribution
of the plants in the layers, conditions which are more or less exactly found
again in the deposits at Ejstrup and Hollund Søgaard, it seems to me that
we have here a thoroughly sufficient proof of the interglacial age of these
formations.

Remarks on the geological conditions.

(Bemærkninger om de geologiske Forhold.)

The flora of the freshwater beds mentioned shows, as above indicated,
that these beds cannot be postglacial, but must have been formed in an
interglacial period. Without entering into much detail with regard to the
geology of the regions in question, I may make some brief remarks on the
position of the freshwater beds in relation to the other strata; the remarks
however apply specially to the bogs at Brørup and Hollund Søgaard. With
regard to the localities, which lie to the east of the main stopping line of
the last glaciation as shown by Ussing (1903), nothing certain can be said,
so long as the geological conditions in the valley of the Kolding Å and
round the other localities mentioned in East Jutland have not been unrav-
elled in detail. How far the plant-bearing deposits at Fredericia and Trælle
have been only a little disturbed by the ice or whether they are quite loose
masses must remain unsettled; on the other hand, the Ejstrup bed must
certainly be considered to lie on a primary place; section A (p. 206 et seq.)
shows us a distinct basin-filling with undisturbed stratification (clay, gyttje,
clay).

If we now consider the higher land (»Bakkeøø«) at Tirslund, the geological
conditions are on the whole the following: the lowermost pleistocene deposit
is a typical ground moraine, which I regard as a lower moraine older than
the surface moraines in East Jutland. Above this lies a more or less exten-
sive (usually some few meters) bed of fluvio-glacial sand, through which the ground moraine, which has a very undulating surface, rises up here and there like islands. The fluvio-glacial sand is covered by a thin (ca. 1/2 m.) deposit of stony sand, which I judge from its whole appearance and nature (scattered, unsorted stones, contents of fine material in larger quantities than in the underlying sand, the wanting stratification) to be a ground moraine of a thin ice-sheet which has been of short duration.

As above mentioned, the bogs on the higher land are found in depressions, which can be distinctly observed on the surface of the land. Their exact position in the above-mentioned series of deposits has however only been determined with certainty for the bogs on Tuesbøl Common and at Skovlyst, which rest directly on moraine clay. For the remaining bogs only sand has been noted as subjacent bed; but whether this sand is fluvio-glacial sand or whether it is freshwater sand which has been washed out into the basin in which the bog has been formed, cannot for the present be determined; the last view is however the most probable, as I have found plant remains for example in the sand under the bog in Brørup Station town.

The bogs nowhere appear open without any cover; the latter is however never moraine clay, but sand of greater or less extent, varying from 1 to 5 m. This sand is considered by N. O. Holst (1901) as drift sand, whilst A. Jessen (1905) believes that it is due to a slide, partly also washed or blown out over the peat from the surrounding country. The transport is considered to have mainly occurred during the advance of the inland ice, which came after the formation of the bogs (according to Jessen however the ice did not reach so far to the west), and the great accumulation of snow in winter together with the sudden thawing in spring would form such large quantities of water on the surface of the land, that the upper layers would become sodden and thus ready to slide.

I am unable however to agree with either of these views. That in these districts the sand has moved almost everywhere in postglacial (and late glacial) times is certainly correct; but the extensive beds of sand with great stones which lie above the interglacial bogs, is not drift sand, but of pleistocene age. In the sections above the bogs (specially well developed above the bog of Hollund Søgaard) I have observed quite the same distinction between the stony sand and the stratified fluvio-glacial sand as in sand pits and other sections outside the bogs; further, it seems to me that the above-mentioned, large stones in the sand above the bog on Tuesbøl Common and at Lundtofte speak distinctly against the view, that there has been a sliding of the sand or that it has been blown out from the neither high nor steep ridges round the bogs.

I can therefore only consider the sand above the bogs, which cannot be distinguished from the ordinary stony sand and fluvio-glacial sand, as evidence that the bogs are older than the last glaciation of the group of ridges — even if the ice-sheet has only lain here a relatively short time and had a relatively small thickness.

It seems to me therefore, that we have here both palaeontological and stratigraphical evidence for the interglacial age of the fossiliferous beds; their flora and fauna show that they cannot be postglacial, their mode of deposition that they cannot be preglacial. Under the supposition that there have been several interglacial periods in our country, the general features of the depo-
sition show that the fossiliferous beds must have been formed in
the most recent interglacial period (of this region).

The evidence that the Glacial Period in Europe and North America has
been interrupted by one or several interglacial periods increases year by
year, and the adherents of «Monoglacialism», who have become very few in
numbers (though very prolific with the pen) during the last ten years, seem
to lose ground more and more.

Whether there have been one or several interglacial periods in this coun-
try is a question that must remain undecided; as is known, H. Menzel has
recently (1908) expressed himself in favour of a »Mono-Interglacialism«,
whilst most European and American authors accept several interglacial pe-
riods. Future investigations must determine this point; so far as Denmark is
concerned, I merely wish to indicate that one of the borings at Vejen (p. 187)
has shown several peat layers lying above one another; this condition —
just as little as the numerous data given in the other European and American
literature of several peat-layers above each other — can scarcely be brought
into agreement with the view of a single interglacial period.

List of the interglacial flora and fauna
of Denmark
(excluding the marine flora and fauna).

On pp. 255—65 is given a list including all the animals and plants from
the above-mentioned interglacial beds (both on primary as well as sec-
dary positions), as also from the freshwater zone of the Eem deposits
(Cyprina clay) and from the interglacial beds at Hollerup, Fredericia
and Trælle; the diatoms mentioned by E. Østrup from these beds are
however, out of regard for space, not included here.

Under the heading »Eem-zone« are included — in addition to the
plants mentioned by me (1908) — the freshwater animals given by V. Nord-
mann (1908); it may be remarked, that under this heading I have included
flora and fauna not only from the Danish localities, but also from Stensig-
mose Klint on Broager; Limnanthemum is only known from this locality.

Under »Hollerup etc.« are brought together the interglacial animals and
plants known from Hollerup, Fredericia and Trælle (D. G. U., II. R. Nr. 9);
Phacotus and Chrysomonadineae were later noted from here by Lagerheim
(1902, p. 487).

The list embraces in all ca. 313 species, 67 animals and 240 species of
plants.
THESES.

1. De jydske Brunkul er allejrede i Ferskvandsbassiner og ligger paa primært Leje.

2. Den i denne Afhandling omtalte Udviklingsrække af *Stratiotes*-Fro antyder Muligheden af, at man ved et nojere Studium af de enkelte Arters Variation ad phytopalæontologisk Vej kan skælne mellem præ- og interglaciale Allejinger.

5. Arternes biologiske Konstans gennem Tiderne er et Postulat.

6. Det maa anses for fastslaaet, at Sandflugt kan frembringe typiske Former af Sten; Horizonter med sandslebne Sten kan derfor betegne Tilstedeværelsen af gamle Landoverflader.

7. Verworn's og Rutot's Undersøgelser gør det i høj Grad sandsynligt, at Mennesket er optraadt i Europa i Tertiærtiden.

8. Undersøgelsen af de tasmanske Nutids-Køkkenmøddinger har kastet nyt Lys over Eoliterne og givet Studiet af disse en sikker Basis.
Bidrag til Danmarks tertiære og diluviale Flora.

Af

N. Hartz.

Atlas.

København.
I Kommission hos C. A. Reitzel.
1909.
Register til Tavlefigurerne.

Acer sp. XII. 5

Ajuga reptans XI. 27

Alnus sp.(KefersteiniiGOEPPT.) III. 5—8

Betula nana X. 4—5

Braesenia purpurea MICH. V. 17—21

Callitriche autumnalis VII. 8

Carpinus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpinus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8

Carpus betulus XII.

Carpolithes A III. 1—27

Brasenia purpurea Mighx. V. 17—21

Callitriche autumnalis VII. 8
Polygonum lapathifolium... XII 20

Populus tremula... VII 17, XI 14—18

Potentilla anserina... IV 21

Praunus padus... VI 6

Pteris ehr Porschlugiana Ung.... III 1

Rubus sp... XII 23—24

Ranunc maritimus... VII 3

sp.... XI 19—20

Sagittaria sagittatolia... XI 21

Sambucus sp.... IV 28, XII 21

Sequoia Langsdorffii... III 3—4

Sparganium ramosum... V 14—16, IX 15

Stauroneis sp.... III 21

Stratiotes aloides... IV 5—6, IX 1—7

L. f. intermedia... IV 3—4, 9

Kallenmordhensen... IV 1—2, 7—8

Taphrina ohii... XI 1

Taxus baccata... XI 12—13

Tilia europaea... XII 9—10

grandifolia... VII 2

Tortilis anthriscus... XII 11—12

Pinus sp.... XI 22—24

Viola palustris... XII 22

Viscum album... XI 28—29

Vitis letonica A. Br.... VI 17

Med Undtagelse af T. III, Fig. 23—25, der er tegnede af Hr. E. Østrup og T. III, Fig. 1, 10 og 19, der er tegnede af Hr. H. Olmø, er alle Tegningerne udførte af Hr. E. Ditlvensen.
Planter fra Cementsten.

Fig. 1. *Coccolites Kanei* Hn. ¼, Nordstranden af Fur. S. 15.

Fig. 2. *Phyllites* sp. ¼. Klitgaard. Mors. S. 17.
Planter fra Cementsten.

Fig. 1. *Cocculites Kanei* Hr. ½, Hanklit. Mors. S. 15.
Fig. 2. *Pinus cfr. Laricio Thomasiana* Hr. ¼, Mors. S. 12.
Fig. 3. *Carpolithes Fureusis m.* Nordstrand at Fur. S. 15.
Fig. 4. *Erirhinus sp.?* Brothen. Holsten. S. 18.
Fig. 5. *Carpolithes rhabdospermus (LESQ.) m.* Brothen. Holsten. S. 18.
Table III
Planter fra Brunkul.

Fig. 1. *Pteris* cfr. *Parschlugiana* UNG. Et fragmentarisk Smaablad. ¼, Gytje, Salten. S. 55.

Fig. 2. *Pinus Laricio Thomasiana* HEER. ¼, Gytje, Sønderskov. S. 55.

Fig. 3—4. *Sequoia Langsdorfi* BRINGT. sp. Fig. 3.: Gytje, Salten. Fig. 4.: Gytje, Sønderskov. S. 56.

Fig. 5—8. *Alnus* sp. (Kefersteinii GOEPF.) Gytje. Fig. 5—6 Salten. Fig. 7—8 Sønderskov. S. 56—57.

Fig. 9. *Betula* sp. ¼, Gytje, Salten. S. 57.

Fig. 10. *Carpolithes Dalgasii* m. Gytje, S., Sønderskov. S. 58.

Fig. 11—13. *Carpolithes Johnstrupii* m. Fig. 11. En Carpolith, kuglerund, spaltet i to Hälvdeler a og b, begge set indvendig. c udvendig. Brunkul, Sønderskov. S. 58. Fig. 12. En fladttrykt og spaltet Carpolith set indvendig og udvendig. Salten. Fig. 13. En fladttrykt Carpolith, noget større end de fleste andre Eksempler. Salten. S. 58.

Fig. 14—16. *Carpolithes Nyssoides* m. Fig. 14—15 Salten. Fig. 16 Sønderskov. S. 58—59.

Fig. 17—18. *Carpolithes A*. Gytje, Sønderskov. S. 59.

Fig. 19. *Carpolithes B*. Gytje, Sønderskov. S. 59.

Fig. 20. *Carpolithes B*? Gytje, Salten. S. 59.

Fig. 21. *Hydrocharis tertaria* m. Gytje, Sønderskov. S. 59.

Fig. 22. *Melosira* sp. ¼, Brunkul B; Sønderskov. S. 63. del. E. ØSTREP.

Fig. 23. *Pinularia Braunii GRUN. VAR. ¼, Gytje; Sønderskov. S. 63. del. E. ØSTREP.

Fig. 24. *Stauroneis* sp. ¼, Glimmerler; Sandfeldgaard. S. 63. del. E. ØSTREP.

Fig. 25. *Hemiaulus* sp. ¼, Gytje; Sønderskov. S. 63. del. E. ØSTREP.
Planter fra Rav-Pindelag m.m.

Fig. 1—2. *Stratiotes Kaltennordhemensis* (Zenk.). Valby Bakke. S. 125.

Fig. 3—4. *Stratiotes aloides* L. f. *intermedia* m. Præglacial Gytje ved Eime, Hannover. S. 126.

Fig. 5—6. *Stratiotes aloides* L. Interglacial Mose, Tuesbøl Mark ved Brørup. S. 126—127.

Fig. 7—8. *Stratiotes Kaltennordhemensis* (Zenk.). Valby Bakke. S. 125.

Fig. 9. *Stratiotes aloides* L. f. *intermedia* m. Valby Bakke. S. 126.

Fig. 10. *Carpolithes Ordrupensis* m. Ordrup. S. 123.

Fig. 11—15. *Carpolithes Rosenkjarrii* m. Fig. 11 med Klap. Fig. 12 uden Klap. Fig. 13 i Tværsnit. Fig. 14 uregelmæssigt formet, med 2 Klapper. Fig. 15 en firerummet Carpolith med 2 Klapper, set fra Basis og fra Toppen. Valby Bakke. S. 123.

Fig. 16. *Carpolithes le Mairii* m. Valby Bakke. S. 123.

Fig. 17. *Vitis teutonica* A. Br. Valby Bakke. S. 125.

Fig. 18—21. *Carpolithes Johnstrupii* m. Valby Bakke. S. 123.

Fig. 22—23. *Carpolithes Steenstrupii* m. Valby Bakke. S. 124.

Fig. 24. *Potentilla anserina*. Valby Bakke. S. 124.

Fig. 25—26. *Carpolithes Ostrupii* m. Kalvebodstrand. S. 124.

Fig. 27. *Ceratophyllum demersum*. Kalvebodstrand. S. 126.

Fig. 28. *Sambucus* sp. Bovbjerg. S. 126.
Planter fra Rav-Pindelag m. m.

Fig. 1. *Elvocarpus globulus* P. MENZ. Brunkul, Senftenberg, Nieder Lausitz, leg. N. Hartz 1898. S. 124.

Fig. 2—5. *Elvocarpus globulus* P. MENZ. Valby Bakke. S. 124.

Fig. 6. *Carpolithes Hafniensis* m. Fig. 6 a set fra Siden, 6 b set fra Toppen, 6 c set fra Basis. Valby Bakke. S. 122.

Fig. 7. *Pinus* cfr. *Hageni* HR. Kalvebodstrand. S. 122.

Fig. 8—13. *Pinus silvestris*. Bullede Kogler og "Kogletenes". Valby Bakke. S. 125.

Fig. 14—16. *Sparganium ramosum*. Sammenvoksede Frugtstene. Fig. 14 dannet ved Sammenvoksning af 2 Frugtstene (set fra Siden og Toppen), Fig. 15 af 3 (set fra Siden, Basis og Toppen) og Fig. 16 af 4 Frugtstene (set fra Siden og Toppen). Valby Bakke. S. 126.

Fig. 17—21. *Brasenia purpurea* Michx., forstørrede Kopier efter Gunnar Andersson (1896, Tavle I, Fig. 3—5 og 9—10). Ordrup. S. 122.
Planter m. m. fra interglacial Mose i Brorup Stationsby.

Fig. 1. Osmunda regalis. Velbevaret Rhizom. \(\frac{1}{2} \). S. 147.

Fig. 2. Osmunda regalis. Destrueret Rhizom; sorte, sylformede Karstræng-Bundter liggende i Sphagnumtørv. \(\frac{1}{2} \). S. 143.

Fig. 3. Osmunda regalis. Bladfragment. \(\frac{1}{4} \). S. 147.

Fig. 4. Enodium (Molinia) coeruleum. Rhizom med knoldformet opsvulmede Stængelled. \(\frac{1}{4} \). S. 146.

Fig. 5. Drosera rotundifolia. Frø, stærkt forstørret. S. 148.

Fig. 6. Prunus padus. Frugtsten. S. 150.

Fig. 7—11. Cervide (Cervus dama?) Ekskrementer. Fig. 7—10 fra Brorup. S. 142. Fig. 11 fra Lervad Mark. S. 182.
Table VII
Planter fra forskellige interglaciale Moser.

Fig. 1. *Empetrum nigrum*. Bladbærende Grene. Brørup, c. S. 148.

Fig. 2. *Tilia grandifolia*. Kapsel. Brørup, c. og Tøversnit, S. 149.

Fig. 3. *Rumex marilimus*. Frugt. Brørup. S. 151.

Fig. 4—6. *Entorrhiza vaccinii* E. Rostr., paa Rodder af *Vaccinium uliginosum*. 4a og 5a naturlig Størrelse. 4b og 5b a, 6a kugleformede, 6b ellipsoidiske Sporer. a+b. Tøvshol. det. et. del. E. Rostrup. S. 166.

Fig. 7. *Mycorrhiza* sp. Løstliggende Mycorrhizer, 7a, 7b b. Tøvshol. det. et. del. E. Rostrup. S. 162.

Fig. 8. *Callitriche autumnalis*. Bramminge, c. b. S. 184.

Fig. 13. *Dulichium spathaceum*. Frugt, Lervad, c. S. 164 og S. 183.

Fig. 17. *Populus tremula*. Skovlyst. c. S. 179.

Fig. 18. *Picea excelsa*. Gren med Bladknop og Bladar. Tøvshol. c. S.
Table VIII
Dulichium spathaceum Pers.

fot. Dr. P. Harder.

Fig. 1. ½. Herbarie-Eksemplar fra Sayre, Pa., U. S. A., c. 42° n. B. (Herb. N. Hartz.)

Fig. 2. ½. Herbarie-Eksemplar fra Nova Scotia. U. S. A. (Mus. Bot. Hafn.)
Planter fra interglacial Mose ved Tuesbol m. m.

Fig. 1—7. *Stratiotes aloides*. Frø, Tuesbol. S. 170.
Fig. 8—11. *Lustrava thelypteris*. Bladrest, Tuesbol. S. 170.
Fig. 12—13. *Ilex aquifolium*. Blad, Tuesbol. S. 164.
Fig. 14. *Hydrocharis morsus ranæ*. Frø, Tuesbol. S. 173.
Fig. 15. *Sparganium ramosum*. Dobbelt-Frughtsten, Tislund. S. 191.
Fig. 16—18. *Picea excelsa*. Tuesbol. S. 163.
Fra forskellige interglaciale Moser.

Fig. 1—2. *Picea excelsa*. Kogler. 1. Bramminge. S. 185.

Fig. 3. *Dulichium spathaceum*. Frugt. c. 1. Høilund Søgaard. S. 200.

Fig. 4—5. *Betula nana*. Blade, Høilund Søgaard. S. 200.

Fig. 6. *Picea excelsa*. Stencellebark, stærkt forstørret, Høilund Søgaard. S. 200.

Fig. 7—10. *Eoliter*. 1. Høilund Søgaard. Fig. 7. Slagsten? (percuteur?). S. 203. Fig. 8. Skraber (racloir). S. 203. Fig. 9. Skraber? (racloir?). S. 204. Fig. 10. En Flintknold, hvoraf er afskrælt tynde Lameller. S. 204.
Planter og Dyr fra Ejstrup.

Fig. 1. *Plumatella* sp. Statoblastere paa Epiderm af *Anodonta*.

Fig. 2. Larag af *Phryganide*. Lævehylster.

Fig. 3. *Piscicola* sp. Ægkapsel.

Fig. 4. *Taphrina alni* paa Elerakle. ?.

Fig. 5. *Gnemonia* sp. paa Avnbøg-Blad.

Fig. 6. *Marchantia polymorpha*. Frugtstand.

Fig. 7—11. *Picea excelsa*. Vingede og vingelose Fro.

Fig. 12—13. *Taxus baccata*. Fro.

Fig. 14—18. *Populus tremula*. Rakleskæl.

Fig. 19—20. *Rumex* sp. Frugter med og uden Blister.

Fig. 21. *Sagittaria sagittaefolia*. Frugt.

Fig. 22—24. *Ulmus* sp. Frugter og Fro.

Fig. 25. *Ilex aquifolium*. Tornløst Blad.

Fig. 26. *Ilex aquifolium*. Fro.

Fig. 27. *Ajuga reptans*. Frugt.

Fig. 28. *Viscum album*. Stængelstykke.

Fig. 29. *Viscum album*. Frugtskal.
Table XII
Planter fra Ejstrup m. m.

Fig. 1—2. Eupatorium cannabinum. Frugter.
Fig. 3—4. Carpinus betulus. Frugter.
Fig. 5. Acer sp. Frugt.
Fig. 6—7. Cirsium lanceolatum. Frugter.
Fig. 8. ?
Fig. 9—10. Tilia europea. 4-rummet Frugt.
Fig. 11—12. Torilis anthriscus. Frugt.
Fig. 13—14. Oenanthe phellandrium. Frugter.
Fig. 15. Cicuta virosa?
Fig. 16—17. Carum carvi?
Fig. 18. Lycopus europaeus. Frugt.
Fig. 19. Oxalis acetosella. Fro.
Fig. 20. Polygonum lapathifolium. Frugt med Bægertorner.
Fig. 21. Sambucus sp. Frugtsten.
Fig. 22. Viola palustris. Fro.
Fig. 23—24. Rubus sp. Tornede Grene.

Fig. 25. Limnanthemum nympheoïdes. Fro, Gytjblok i nedre Moræne, Københavns Frihavn, c. 17, S. 134.
Table XIII
Corylus avellana

fra forskellige interglaciale Aflejringer tegnede med Tegneprisme, §. S. 250.

Fig. 1—9 f. silvestris.
Fig. 10—14 f. ovata.
Fig. 15—25 f. oblonga.

Fig. 1. 2. 3. 6. 7. 9. 10. 13. 14. 19. 21. 22. 23. 25 fra Ejstrup.
Fig. 4. 5. 8. 11. 12. 15. 16. 17. 24 fra Brorup Stationsby.
Fig. 18 fra Lervad Mark.
Fig. 20 fra Tuesbol Mark.